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Introduction

Fibered operators

Context:
Models with invariance properties are reduced to lower dimensional problems.
Periodic invariance =⇒ Floquet-Bloch transform (cristallin structures).
Translation invariance =⇒ partial Fourier transform (waveguide, stratified
media, magnetic field).
In general, H having invariance properties and U a unitary transform:

UHU∗ =

∫ ⊕
h(k)dk .

Fiber operators h(k) in transversal directions (most of the time) have
confining properties, and therefore compact resolvent.

The band functions:
Their spectra k 7→ (λn(k))n≥1 are the bands functions. The spectrum of H is

σ(H) = ∪
n≥1

Ranλn.

Understanding of the λn is crucial if you want to understand (for example):
Quantum transport properties of the system in the invariance direction.
How the system react under perturbations.
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Introduction

A (very) explicit case

Laplacian in straight cylindrical waveguide

Ω = ω × R + b.c .

(µn)n≥1 the eigenvalues of the Laplacian in the section −∆ω. Explicit fibers

h(k) = −∆ω + k2 and λn(k) = µn + k2.

µn are thresholds (or cut-off frequencies).

and its perturbations:[Plenty of people]

Electric potential and/or Magnetic field.

Bending and twisting.

With obstacles or windows : more difficult framework.

Think also of stratified media!!
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Introduction

The magnetic Laplacian

Schrödinger operator with magnetic field:

H = (−i∇− A)2, B = curlA the magnetic field.

A model case:
Landau Hamiltonian: Ω = R2 and B = 1.

The spectrum are the Landau Levels En := (2n − 1)n≥1, with infinite multiplicity.
The eigenspaces are explicit using the Hermite’s functions.

2D Iwatsuka and hard walls models:

Ω = I × R, I ⊂ R and B = B(x): invariance along y .

H = −∂2
x + (−i∂y − a(x))2, a′(x) = B(x) and b.c .

Partial Fourier transform along y : Uϕ(x , k) =
∫
R e−ikyϕ(x , y)dy .

Fibers: h(k) = −∂2
x + (k − a(x))2 acting on L2(I ) + b.c.
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Introduction

State of the art and basis for these models

Two dimensional magnetic models

Iwatsuka model: I = R and (roughly) B regular positive non constant and
having limits as |x | → +∞. The spectrum of H is absolutely continuous
[Iwatsuka 85]. The propagation occurs on the form on edge states
[Mantoiu-Purice 97] (to be continued).

One or two hard walls, B = 1 and I = R+ or (−L, L) [de Bièvre-Pulé],
[Hislop-Soccorsi], [Geiler-Sanatorov], [Raikov-Briet-Soccorsi],
[Bruneau-Miranda-Raikov]...).

Properties of the fibers:

h(k) forms a Kato family with compact resolvent, the band functions
k 7→ λn(k) are simple and analytic. If they are proper
(lim|k|→∞ λn(k) = +∞), these models enters the theory of [Gérard-Nier 98].

Denote by un(x , k) associated normalized eigenfunction. Fourier
decomposition and projector on the n-th harmonics: given ϕ ∈ L2(R2

+),

ϕn(k) =

∫
I

ϕ̂y (x , k)un(x , k)dx and πn(ϕ)(x , y) =

∫
k

ϕn(k)e ikyun(x , k)dk
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Introduction

Velocity operator and thresholds

The position observable is the multiplication by y :

Its time evolution is y(t) = e−itHye itH . Its time derivative is the current
observable:

y ′(t) = [H, iy(t)] with [H, iy ] = −i∂y − a(x) = Jy .

Well known Feynman-Hellmann formula:

〈Jyπn(ϕ), πn(ϕ)〉L2 =

∫
k

λ′n(k)|ϕn(k)|2dk

The velocity operator acts as the multiplication by the (λ′n(k))n≥1 in suitable
Fourier basis.

The thresholds:

Heuristic definition : spectral values E such that

E ∈ T ⇐⇒ ∃(n, k) ∈ N∗ × R, |λ′n(k)| << 1 and λn(k) ∼ E .

Typically: critical point of λn, but also...
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Introduction

Example of band functions with non-reached thresholds
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Figure: Example of band functions. The thresholds are the Landau levels.
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Introduction

Outside the thresholds

Mourre estimates:

Let I ⊂ R be an interval without threshold. Mourre estimate does exist:

∃c(I ) > 0,∀χ ∈ C∞0 (I ), χ(H)[H,AI ]χ(H) ≥ c(I )χ(H)2.

Key ingredient: lower bound for λ′n(k) when k ∈ λ−1
n (I ). Used many times,

particular case from [Gérard-Nier 97].

Consequence:

Limit absorption principle outside the thresholds.

Description of scattering theory, resonances and eigenvalues created by
suitable perturbations.
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Introduction

Edge states and problematics

The edge states:

Given a quantum states ϕ =
∑

n πnϕ. The group velocity of its harmonics
πnϕ are the values λ′n(k) when k ∈ supp(ϕn).

Let I ⊂ σ(H) without threshold and assume λ′n has constant sign, so that:

∃c(I ) > 0, ∀ϕ ∈ RanPI , ∀k ∈ supp(ϕn(k)), |λ′n(k)| ≥ c(I )

where PI is the spectral projector on I .

Such ϕ are called edge states: in general they are localized in x .

Direction of propagation along y is linked to the sign of λ′n(k).

Easily adapted to non-monotonous band functions.

What happens when I has thresholds?

Standard Mourre estimates does not hold anymore.

We will focus on non reached thresholds E :

lim
k→∞

λn(k) = E .

Physically this corresponds to the presence of bulk states.
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Introduction

Problematics

Some questions:

Can you describe the limit of the band functions, depending on the model?

Can you describe the associated bulk states?

Can you give the number of eigenvalues for suitable perturbation?

Can you do an absorption principle? Can you describe the behavior of the
resolvent near thresholds?
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Non reached thresholds and bulk states

A well known model: the Landau Hamiltonian in a
half-plane

Operator arising in quantum Hall effect modelling and surface superconductivity:

Ω = R+×R with constant magnetic field and Dirichlet OR Neumann b.c.

Fiber: h(k) = −∂2
x + (x − k)2 on L2(R+) with D/N b.c. at x = 0.

Proposition [Plenty of people]

1 For Dirichlet: The band functions k 7→ λD
n (k) are decreasing on R.

2 For Neumann: The band functions k 7→ λN
n (k) admit a unique non

degenerate minimum and

(λN
n )′(k) = (λN

n (k)− k2)u′n(0, k)2.

3 In both cases: limk→−∞ λ
D/N
n (k) = +∞ and

λD/N
n (k) =

k→+∞
En ± Cnk

2n−1e−k2

+ O(k2n−3e−k2

).
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Non reached thresholds and bulk states

Edge states and Bulk states (Dirichlet case)

Bulk states:

Focus on In(δ) = (En,En + δ), 0 < δ << 1.
Can you describe the element of RanPIn(δ) ∩ Ranπn := X δ

n ?

Figure: The energy interval E1(δ).
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Non reached thresholds and bulk states

Result

Theorem [Hislop-Soccorsi-Popoff 15]

All ϕ ∈ X δ
n has small current:

|〈Jyϕ,ϕ〉| ≤ (2δ
√
| log δ|+ O( log | log δ|√

| log δ|
))‖ϕ‖2

L2 ,

and is localized far from the edge:

∀η ∈ (0, 1),

∫ (1−η)
√
| log δ|

x=0

‖ϕ(x , ·)‖2
L2(R)dx ≤ cn(η)δη

2

| log δ|
2n−1

2 (1−η2)‖ϕ‖2
L2 .

The estimate on the current just need precise estimate of λ′n(k) as k → +∞.

Localization requires more careful analysis in phase space and informations on
un(x , k).

The method easily adapts.
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Eigenvalues created by perturbations

The case of reached thresholds

General problematics:
Let V ≥ 0, with limV (x , y) = 0 be a relatively compact perturbation of H.
The infimum of the essential spectrum is still inf λ1. But isolated eigenvalues
(trapped modes) can appear!!

N (r) := #{σ(H − V ) ∩ (−∞, inf λ1 − r)}

Objectif: behavior of N (r) as r → 0.

Theorem [Raikov 90’]

Assume that k 7→ λ1(k) admits a unique non-degenerate minimum in k∗. Then
N (r) behaves like the number of negative eigenvalues of

−µ∂2
y − veff

with µ := 1
2λ
′′
1 (k∗) > 0 and veff (y) =

∫
x
V (x , y)u1(x , k∗)

2dx .

Applied to HN − V in [Bruneau-Miranda-Raikov 14] and [Hislop-Soccorsi 14].
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Eigenvalues created by perturbations

Results for the half-plane Landau Hamiltonian

In the half-plane model, no existence of an “effective mass”! But still:

Theorem [Bruneau-Miranda-Raikov 13]

In the case H = HD , N (r) behaves like the number of negative eigenvalues of

λD
1 − E1 − V

with V the anti-Wick symbol of V :

V :=

∫
x,ξ

V (x , ξ)Px,ξdxdξ

with

Px,ξ := |ψx,ξ >< ψx,ξ|, ψx,ξ(k) := e ikξe
−(x−k)2

2

Corollary: for non-zero compactly supported potential V , HD − V has infinite

discrete spectrum since HN − V has finite discrete spectrum.
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Eigenvalues created by perturbations

3d model

An analogous 3d model: Schrödinger operator in R3 with magnetic field created
by an infinite rectilinear wire bearing a constant current:

B(x , y , z) =
1

r2
(−y , x , 0), r :=

√
x2 + y2

r : distance to the wire.

HA := (−i∇− A)2 = D2
x + D2

y + (Dz − log r)2,

Fibration:

Cylindrical coordinates + angular FT Φ + z-FT F3:

ΦF3HAF∗3 Φ∗ :=

⊕∑
m∈Z

∫ ⊕
k∈R

gm(k)dk

gm(k) := −∂2
r +

m2 − 1
4

r2
+ (log r − k)2, on L2([0,+∞), dr)

σ(gm(k)) = {λn,m(k), n ∈ N∗,m ∈ Z, k ∈ R}.
λ′m,n(k) < 0 and λm,n(k)→ 0 as k → +∞. [Yafaev 03, Yafaev 08].
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Eigenvalues created by perturbations
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Figure: Band functions for a magnetic field created by an infinite wire.
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Eigenvalues created by perturbations

Theorem (B.-Popoff ’14)

For all (m, n) ∈ Z× N∗, there exist constants Cm,n > 0 and k0 ∈ R such that

∀k ≥ k0, |λm,n(k)− (2n − 1)e−k + (m2 − 1
4 −

n(n−1)
2 )e−2k | ≤ Cm,ne

−5k/2
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Eigenvalues created by perturbations

Results for suitable perturbations

Theorem (Bruneau-P. ’14)

Assume V (r , z) ≥ 〈r〉−α v⊥(z), α > 0 with
(i) α < 1

2 and v⊥ ∈ L1(R) such that
∫
R v⊥(z)dz > 0.

or
(ii) v⊥ ≥ C 〈z〉−γ with γ > 0 and α + γ

2 < 1
Then HA − V have a infinite number of negative eigenvalues.

Theorem (Bruneau-P. ’14)

Assume V is a relatively compact perturbation of HA such that
V (x , y , z) ≤ 〈(x , y)〉−α v⊥(z), with α > 1 and 0 ≤ v⊥ ∈ L1(R).
Then HA − V have, at most, a finite number of negative eigenvalues.

Note that in some case, HA − V have finite discrete spectrum since −∆− V has
not!
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Conclusion

Limiting absorption principle (LAP)

LAP for fibered operator

Outside the thresholds: Well known LAP on weighted spaces

L2,s := {ϕ ∈ L2, (1 + y2)s/2ϕ ∈ L2}.

On non-degenerate critical point λ′n(k∗) = 0, LAP on the NHs spaces
[Croc-Dermenjian 95]

NHs := {ϕ ∈ L2,s , ϕn(k∗) = 0}.

Extended to any critical point (“reached thresholds”) in [Soccorsi 99].

New frame work for non-reached thresholds:

LAP for the Landau Dirichlet Hamiltonian in a half-plane [P-Soccorsi 15] at
Landau level.

The absorption spaces require exponential decay on k 7→ ϕn(k).

Associate functions are localized near the edge though phase-space analysis.

This general method is easily adapted to any non-reached threshold!
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Conclusion

To go further

Expansion of the resolvent

Expansion of the resolvent at reached threshold (critical point of the band
functions) is done in general in [Gérard 90].

Description of the resonances for small electrical perturbations follows
[Grigis-Klopp 95]. You need to know some algebraic geometry to extend
singular integral on the universal covering of the resolvent set.

Non-reached thresholds needs a new framework and will give rise to new
singularity of the resolvent.
Example of the Landau Hamiltonian in a half-plane:
λn(k)− En ∼

k→+∞
k2n−1e−k2

=⇒ essential singularity of the symbol at ∞.

Global expansion: complexify the frequency k .

And perturbations

Once you have extended the resolvent around the thresholds, study
eigenvalues and resonances for perturbations (electric potential, deformation
of the boundary, obstacles...).

Numerics will help!!
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Conclusion

Iwatsuka’s magnetic steps

Piecewise constant magnetic field

Snakes’orbit in 2D electron gas [Peeter-Reijniers 2000].

Magnetic field in R2:

B(x , y) = B(x) =

{
b1 if x < 0

b2 if x > 0

When 0 < b1 < b2, the band function are increasing [Hislop-Soccorsi 13].

b1 = 0 =⇒ h(k) does not have compact resolvent: special treatment.

By scaling, we are reduced to b1 < 0 < and b2 = 1.

Limit for large frequencies:

λn(k)→ +∞ as k → −∞. Let L be the set of the Landau levels:

As k → +∞, the limits of the band functions is precisely T := L ∪ |b1|L.

The dispersion curves depend on r := b1

b2
.

Disjonction depending on wether r has the form − 2n−1
2m−1 or not.
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Conclusion

Courbes de dispersions du modèle d’Iwatsuka

b1 = −1, b2 = 1, r = −1
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En abscisse : k paramètre de Fourier dual de y .
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Conclusion

Courbes de dispersions du modèle d’Iwatsuka

b1 = −1.1, b2 = 1, r = −11
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Conclusion

Courbes de dispersions du modèle d’Iwatsuka

b1 = −1.2, b2 = 1, r = −6

5

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10
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Conclusion

Courbes de dispersions du modèle d’Iwatsuka

b1 = −1.3, b2 = 1, r = −13
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Conclusion

Courbes de dispersions du modèle d’Iwatsuka

b1 = −1.4, b2 = 1, r = −7
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Conclusion

Courbes de dispersions du modèle d’Iwatsuka

b1 = −1.5, b2 = 1, r = −3
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Courbes de dispersions du modèle d’Iwatsuka

b1 = −1.6, b2 = 1, r = −8
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Conclusion

Courbes de dispersions du modèle d’Iwatsuka

b1 = −1.667, b2 = 1, r = −5
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Conclusion

Asymptotics of the band function

Theorem [Hislop-Persson-Popoff-Raymond 16]

1 (Non splitting case). Let E ∈ T \ (L ∩ |b1|L). Then there exists a unique
band function converging to E , and the convergence is by above:

λpn (k) =

{
E − Cnk

2n−3e−k2

(1 + o(1)) if E = 2n − 1

E − C̃nk
2n−3e−k2/|b1|(1 + o(1)) if E = |b1|(2n − 1)

2 (Splitting case). Let E ∈ L ∩ |b1|L. Write E = En = |b1|Em. Two band
functions converge toward E , one from below and one from above. The
threshold is asymptotically degenerate and{

λpn (k) = E − Cnk
2n−3e−k2

(1 + o(1))

λpn+1(k) = E + C̃mk
2m+1e−k2/b(1 + o(1))
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Conclusion

Method and comments

Consequences:

When |b1| has not the form − 2n−1
2m−1 , all the band functions have a global

minimum. The quantum transport can occur in two opposite directions since
λn are not monotonous.

Precise asymptotics is needed for precise description of the threshold.

Method

The large k limit is equivalent to a 1d semi-classical problem with double
wells:

h(k) ≡ k2
(
k−4D2

X + V (X )
)
, V (X ) =

{
(xb1 − 1)2, x < 0

(x − 1), x > 0

Better to use special functions: λ is an eigenvalue of h(k) iff

U(− λ
2b ,−

√
2 k√

b
)U ′(−λ2 ,−

√
2k) +

√
bU ′(− λ

2b ,−
√

2 k√
b

)U(−λ2 ,−
√

2k) = 0

where U is the first Weber parabolic cylindrical function.
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