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Some known results-Isotropic case:

1- Full data:

Let Ω be a bounded smooth domain of Rn and V ∈ L∞(Ω,R),
0 < δ ≤ a(.) ∈ L∞(Ω,R).

Schrödinger case:
One solves the Dirichlet problem:{

−∆u + Vu = 0 in Ω,u ∈ H1(Ω)
u = ϕ on ∂Ω

and set NVϕ := ∂u
∂n , the Dirichlet-to-Neumann operator.

Elliptic case:
One solves the Dirichlet problem:{

−div(a∇u) = 0 in Ω,u ∈ H1(Ω)
u = ϕ on ∂Ω

and set Naϕ := a∂u
∂n , the Dirichlet-to-Neumann operator.
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Calderon’s problem:

NV1 = NV2 on ∂Ω⇒ V1 = V2 on Ω?

Na = Nb on ∂Ω⇒ a = b on Ω?

Some known (positive) results:
- Sylvester-Uhlmann (87): a,b ∈ C2 and n ≥ 3,
- Greenleaf-Lassas-Uhlmann (’03): a,b ∈ C1+ε,
- Haberman-Tataru (’13): a,b ∈ C1 (even Lipschitz in some cases),
- Nachman (’96): a,b ∈ C2 and n = 2,
- Astala-Päivärinta (’06): a,b ∈ L∞ and n = 2,
- Uhlmann, Novikov (+....): Schrödinger case with V1,V2 ∈ L∞,
.
.
.

Other aspects: reconstruction of the potential or conductivity or the geometry
of a manifold from the Dirichlet-to-Neumann operator on the boundary.
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2- Partial data:

One knows the measurement only on a part of the boundary:ϕ in the
Dirichlet problem is supported on ΓD ⊂ ∂Ω and the Dirichlet-to-Neumann
operator NV or Na is known on ΓN ⊂ ∂Ω.
Some known (positive) results:
- Izakov (’07): Schrödinger case with ΓN = ∂Ω \ ΓD and ΓN is contained in
a hyperplan,
- Kenig-Sjostrand-Uhlmann (’07): ΓN is a neighborhood of
{x ∈ ∂Ω : (x − x0).n(x) ≤ 0} for some x0,
- Imanuvilov-Uhlmann-Yamamoto (’10): n = 2, V1,V2 smooth and
ΓN = ∂Ω \ ΓD.
-
-
- Other results by Kenig, Uhlmann, Dos Santos, Sjöstrand, Salo,...

Calderon’s inverse problem for partial data is in general open for n ≥ 3 both
for Schrödinger and conductivity cases.
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The anisotropic case:

Let La = −
∑

k,j div(akj∇) and consider the full data (ΓN = ∂Ω). One defines
the Dirichlet-to-Neumann operator as before:{

Lau = 0 in Ω,u ∈ H1(Ω)
u = ϕ on ∂Ω

Naϕ :=
∂Lau
∂n

=
d∑

j=1

n∑
k=1

akj∂k u.nj

- Lee-Uhlmann (’89): akj are real analytic then uniqueness up to
diffeomorphism holds (n ≥ 3),
- Astala-Lassas-Päivärinta (’05): Uniqueness up to a diffeomorphism (n = 2
and L∞ coefficients),
- Behrndt-Rohleder (’12): a = (akj ),b = (bkj ) Lipschitz, Γ ⊂ ∂Ω and the
Dirichlet-to-Neumann operators Na(λ) = Nb(λ) on Γ and λ in a set having an
accumulation point (Na(λ) is the Dirichlet-to-Neumann operator for La − λI).
Then La and Lb, subject to Dirichlet boundary conditions, are unitarily
equivalent, i.e. La = ULbU−1, U is a unitary operator on L2(Ω).



The anisotropic case:

Let La = −
∑

k,j div(akj∇) and consider the full data (ΓN = ∂Ω). One defines
the Dirichlet-to-Neumann operator as before:{

Lau = 0 in Ω,u ∈ H1(Ω)
u = ϕ on ∂Ω

Naϕ :=
∂Lau
∂n

=
d∑

j=1

n∑
k=1

akj∂k u.nj

- Lee-Uhlmann (’89): akj are real analytic then uniqueness up to
diffeomorphism holds (n ≥ 3),
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Main result

Theorem
Suppose that Ω is a bounded Lipchitz domain of Rd with d ≥ 2. Let Γ0 be a
closed subset of ∂Ω and Γ1 = ∂Ω \ Γ0.
Let a = {akj ,a0} and b = {bkj ,b0} be bounded functions on Ω such that akj
and bkj satisfy the usual ellipticity condition. If d ≥ 3 we assume in addition
that the coefficients akj ,bkj ,a0,b0 are Lipschitz continuous.
Suppose that Na(λ) = Nb(λ) on Γ1 for all λ in a set having an accumulation
point in ρ(LD

a ) ∩ ρ(LD
b ). Then:

i) The operators La and Lb endowed with Robin boundary conditions are
unitarily equivalent.
ii) The operators La and Lb endowed with mixed boundary conditions
(Dirichlet on Γ0 and Neumann on Γ1) are unitarily equivalent.
iii) The operators La and Lb endowed with Dirichlet boundary conditions are
unitarily equivalent.
In addition, for Robin or mixed boundary conditions, the eigenfunctions
associated to the same eigenvalue λ /∈ σ(LD

a ) = σ(LD
b ) coincide on the

boundary of Ω.
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- Unlike in [Berhndt-Rohleder], we do not assume any regularity in d = 2.
Here akj ,ak ∈ L∞.

- We extend the result of [Berhndt-Rohleder] to deal with other boundary
conditions (Robin and mixed ones).
- The meaning of the latest assertion is: for every λ ∈ σ(Lµa ) = σ(Lµb ) with
λ /∈ σ(LD

a ) = σ(LD
b ), the sets {Tr(u),u ∈ Ker(λI − Lµa )} and

{Tr(v), v ∈ Ker(λI − Lµb )} coincide.
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Basic material

Let akj = ajk ,a0 ∈ L∞(Ω,R) with the usual ellipticity condition:
n∑

k,j=1

akj (x)ξkξj ≥ δ|ξ|2 a.e.x ∈ Ω∀ξ ∈ Rn(δ > 0).

We define, using the method of bilinear forms, the elliptic operators
La = −div(akj∇) + a0 with:

Dirichlet boundary conditions (LD
a ): u = 0 on ∂Ω.

Mixed boundary conditions (LM
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Let V = {u ∈ H1(Ω) : u = 0 on Γ0} and
VH := {u ∈ V ,Lau = 0 in the weak sense}.

Then if 0 /∈ σ(LD
a ):

V = VH ⊕ H1
0 (Ω).

This allows to define on L2(∂Ω) the symmetric form:

b(ϕ,ψ) :=
n∑

k,j=1

∫
Ω

akj∂ju∂k vdx +

∫
Ω

a0uvdx ,

for u, v ∈ VH with ϕ = Tr(u) and ψ = Tr(v).
The operator associated with the form b is given by:

Naϕ = ψ ⇔ ∀h ∈ Tr(V ) : b(ϕ,h) =

∫
∂Ω

ψhdσ ⇔

ϕ = 0 on Γ0, ψ =
∑
k,j

akj∂k u.nj on Γ1 = ∂Ω \ Γ0.

This is the Dirichlet-to-Neumann operator with partial data (given on Γ1).
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Set
H := D(b)

L2(∂Ω)
= L2(Γ1)⊕ {0}.

Then Na is a self-adjoint operator on H (not densely defined on L2(∂Ω)).

The semigroup e−tNa acts on L2(∂Ω).

Theorem

Suppose that 0 /∈ σ(LD
a ) and that the self-adjoint operator LD

a is positive.
a) The semigroup (e−tNa )t≥0 is positive (i.e., it maps non-negative functions of
L2(∂Ω) into non-negative functions).
b) Suppose that a0 ≥ 0. Then (e−tNa )t≥0 is a sub-Markovian semigroup.
c) Suppose that a0 ≥ 0. Then (e−tNa )t≥0 is non-decreasing as a function of
Γ1. It is a non-increasing function of a0.

The proof of a) and b) are based on the theory of Dirichlet forms.
Assertion c) is based on criteria for domination of semigroups ([Ou’ 95]).
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Ideas of proof of the main result

Set Na(λ) the Dirichlet-to-Neumann operator with a0 replaced by a0 − λ for
λ /∈ σ(LD

a ).
One of the main ingredient in the proof is the following relationship between
the spectra of the Dirichlet-to-Neumann operator and the elliptic operator with
Robin boundary conditions.

Theorem

Let µ, λ ∈ R and λ /∈ σ(LD
a ). Then:

1) µ ∈ σ(Na(λ))⇔ λ ∈ σ(Lµa ). In addition, if u ∈ Ker(λ− Lµa ), u 6= 0 then
ϕ := Tr(u) ∈ Ker(µ−Na(λ)) and ϕ 6= 0. Conversely, if ϕ ∈ Ker(µ−Na(λ)),
ϕ 6= 0, then there exists u ∈ Ker(λ− Lµa ), u 6= 0 such that ϕ = Tr(u).
2) dim Ker(µ−Na(λ)) = dim Ker(λ− Lµa ).

Proof:
S : Ker(λ− Lµa )→ Ker(µ−Na(λ)), u 7→ Tr(u)

is an isomorphism.
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2) dim Ker(µ−Na(λ)) = dim Ker(λ− Lµa ).

Proof:
S : Ker(λ− Lµa )→ Ker(µ−Na(λ)), u 7→ Tr(u)

is an isomorphism.



In order to prove that Lµa and Lµb are unitarily equivalent we prove that
σ(Lµa ) = σ(Lµb ) and the eigenvalues have the same multiplicity.

It is not difficult
to see that

Lemma
For every λ /∈ σ(LD

a ) ∪ σ(LD
b )

Na(λ) = Nb(λ).

Based on the fact that λ 7→ Na(λ) is a meromorphic function with poles σ(LD
a ).

Set σ(Lµa ) := {λµa,1 ≤ λ
µ
a,2 ≤ ....} and σ(Lµb ) := {λµb,1 ≤ λ

µ
b,2 ≤ ....}.

Let λ = λµa,k ∈ σ(Lµa ) \ σ(LD
a ) ∪ σ(LD

b ). By the previous theorem,
µ ∈ σ(Na(λ)) = σ(Nb(λ)) and hence λ ∈ σ(Lµb ) by the same theorem.
Thus, λ = λµa,k = λµb,j for some j ≥ 1.
The second assertion of the same theorem, shows that the eigenvalues λµa,k
and λµb,j have the same multiplicity.
Next we prove

Lemma

j = k
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If k < j then
λµb,1 ≤ λ

µ
b,2 ≤ · · · ≤ λ

µ
b,k ≤ · · · ≤ λ

µ
b,j = λµa,k .

Each λµb,m coincides with an eigenvalue of Lµa (with the same multiplicity) and
hence λµa,k is (at least) the j−th eigenvalue of Lµa with j > k which is not
possible.

Lemma
For each k, µ 7→ λµa,k is strictly decreasing on R and λµa,k → −∞ as µ→ +∞.

- µ 7→ λµa,k is non-increasing by the min-max principle.
- Suppose µ 7→ λµa,k = λ for µ ∈ [α, β] (for some α < β). Then the
corresponding eigenfunction uµ ∈ H1

0 (Ω):

λ

∫
Ω

uµ+huµ dx = (Lµ+h
a uµ+h,uµ)

= (Lµa uµ+h,uµ)− h
∫

Γ1

Tr(uµ+h)Tr(uµ) dσ

= λ

∫
Ω

uµ+huµ dx − h
∫

Γ1

Tr(uµ+h)Tr(uµ) dσ.

Take h→ 0.
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- We use the unique continuation property to conclude (this is the place where
we need Lipschitz regularity on the coefficients if d ≥ 3. Unique continuation
holds in d = 2 for bounded coefficients [Schulz, 1998]).

Back to the proof of the theorem:
We have seen that λµa,k = λµa,k (with the same multiplicity) whenever
λµa,k /∈ σ(LD

a ) ∪ σ(LD
b ).

Hence, there exists a discrete set J ⊂ R such that for λµa,k = λµb,k for µ ∈ R \ J.
By continuity of µ 7→ λµa,k and λµb,k , we obtain λµa,k = λµb,k for all µ ∈ R and the
multiplicities are the same.
Finally, the unitary operator U s.t. Lµb = ULµaU−1 is constructed by:

U : L2(Ω)→ L2(Ω), fk 7→ gk

where (fk ) and (gk ) are the eigenfunctions of Lµa and Lµb (these are o.n. bases
of L2(Ω)).
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- The similarity of the operators with mixed b.c. is obtained from the previous
case by taking µ = 0.

- For Dirichlet b.c. we prove

Lemma
For λ ∈ R large enough, (λ+ Lµa )−1 converges uniformly in L(L2(Ω)) to
(λ+ LD

a )−1 as µ→ −∞.

As a consequence, λµa,k → λD
a,k as µ→ −∞, where σ(LD

a ) = (λD
a,k )k . The

same holds for LD
b and the similarity of LD

a and LD
b follows.
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