A "milder" version of Calderon's inverse problem for anisotropic conductivities and partial data

> El Maati Ouhabaz, Univ. Bordeaux (Porquerolles, May 2016)

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Some known results-Isotropic case:

1- Full data:

Some known results-Isotropic case:

1- Full data:

Let Ω be a bounded smooth domain of \mathbb{R}^n and $V \in L^{\infty}(\Omega, \mathbb{R})$, $0 < \delta \leq a(.) \in L^{\infty}(\Omega, \mathbb{R})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

1- Full data:

Let Ω be a bounded smooth domain of \mathbb{R}^n and $V \in L^{\infty}(\Omega, \mathbb{R})$, $0 < \delta \leq a(.) \in L^{\infty}(\Omega, \mathbb{R})$.

• Schrödinger case:

One solves the Dirichlet problem:

<

$$\begin{cases} -\Delta u + Vu = 0 \text{ in } \Omega, u \in H^1(\Omega) \\ u = \varphi \text{ on } \partial \Omega \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

and set $\mathcal{N}_V \varphi := \frac{\partial u}{\partial n}$, the Dirichlet-to-Neumann operator.

1- Full data:

Let Ω be a bounded smooth domain of \mathbb{R}^n and $V \in L^{\infty}(\Omega, \mathbb{R})$, $0 < \delta \leq a(.) \in L^{\infty}(\Omega, \mathbb{R})$.

• Schrödinger case:

One solves the Dirichlet problem:

$$\left\{ \begin{array}{l} -\Delta u + Vu = 0 \ \ {\rm in} \ \Omega, u \in H^1(\Omega) \\ u = \varphi \ \ {\rm on} \ \partial \Omega \end{array}
ight.$$

(日) (日) (日) (日) (日) (日) (日)

and set $\mathcal{N}_V \varphi := \frac{\partial u}{\partial n}$, the Dirichlet-to-Neumann operator.

• Elliptic case:

1- Full data:

Let Ω be a bounded smooth domain of \mathbb{R}^n and $V \in L^{\infty}(\Omega, \mathbb{R})$, $0 < \delta \leq a(.) \in L^{\infty}(\Omega, \mathbb{R})$.

• Schrödinger case:

One solves the Dirichlet problem:

$$\begin{cases} -\Delta u + Vu = 0 \text{ in } \Omega, u \in H^1(\Omega) \\ u = \varphi \text{ on } \partial \Omega \end{cases}$$

and set $\mathcal{N}_V \varphi := \frac{\partial u}{\partial n}$, the Dirichlet-to-Neumann operator.

• Elliptic case:

One solves the Dirichlet problem:

<

$$\left\{ egin{array}{l} - {\it div}({\it a}
abla {\it u}) = {\tt 0} \ {\it in} \ \Omega, {\it u} \in {\it H}^1(\Omega) \ {\it u} = arphi \ {\tt on} \ \partial \Omega \end{array}
ight.$$

and set $\mathcal{N}_{a}\varphi := a\frac{\partial u}{\partial n}$, the Dirichlet-to-Neumann operator.

$$\mathcal{N}_{V_1} = \mathcal{N}_{V_2} \text{ on } \partial\Omega \Rightarrow V_1 = V_2 \text{ on } \Omega?$$
$$\mathcal{N}_a = \mathcal{N}_b \text{ on } \partial\Omega \Rightarrow a = b \text{ on } \Omega?$$

$$\mathcal{N}_{V_1} = \mathcal{N}_{V_2} \text{ on } \partial\Omega \Rightarrow V_1 = V_2 \text{ on } \Omega?$$
$$\mathcal{N}_a = \mathcal{N}_b \text{ on } \partial\Omega \Rightarrow a = b \text{ on } \Omega?$$

• Some known (positive) results:

.

$$\mathcal{N}_{V_1} = \mathcal{N}_{V_2} \text{ on } \partial\Omega \Rightarrow V_1 = V_2 \text{ on } \Omega?$$
$$\mathcal{N}_a = \mathcal{N}_b \text{ on } \partial\Omega \Rightarrow a = b \text{ on } \Omega?$$

- Some known (positive) results:
 - Sylvester-Uhlmann (87): $a, b \in C^2$ and $n \ge 3$,
 - Greenleaf-Lassas-Uhlmann ('03): $a, b \in C^{1+\epsilon}$,
 - Haberman-Tataru ('13): $a, b \in C^1$ (even Lipschitz in some cases),
 - Nachman ('96): $a, b \in C^2$ and n = 2,
 - Astala-Päivärinta ('06): $a, b \in L^{\infty}$ and n = 2,
 - Uhlmann, Novikov (+....): Schrödinger case with $V_1, V_2 \in L^{\infty}$,

Other aspects: reconstruction of the potential or conductivity or the geometry of a manifold from the Dirichlet-to-Neumann operator on the boundary.

2- Partial data:

• One knows the measurement only on a part of the boundary:

2- Partial data:

 One knows the measurement only on a part of the boundary: φ in the Dirichlet problem is supported on Γ_D ⊂ ∂Ω and the Dirichlet-to-Neumann operator N_V or N_a is known on Γ_N ⊂ ∂Ω.

(ロ) (同) (三) (三) (三) (○) (○)

- One knows the measurement only on a part of the boundary: φ in the Dirichlet problem is supported on Γ_D ⊂ ∂Ω and the Dirichlet-to-Neumann operator N_V or N_a is known on Γ_N ⊂ ∂Ω.
- Some known (positive) results:
 - Izakov ('07): Schrödinger case with $\Gamma_N = \partial \Omega \setminus \Gamma_D$ and Γ_N is contained in a hyperplan,

- Kenig-Sjostrand-Uhlmann ('07): Γ_N is a neighborhood of
- $\{x \in \partial \Omega : (x x_0) . n(x) \leq 0\}$ for some x_0 ,
- Imanuvilov-Uhlmann-Yamamoto ('10): $n = 2, V_1, V_2$ smooth and $\Gamma_N = \partial \Omega \setminus \Gamma_D$.
- Other results by Kenig, Uhlmann, Dos Santos, Sjöstrand, Salo,...

- One knows the measurement only on a part of the boundary: φ in the Dirichlet problem is supported on Γ_D ⊂ ∂Ω and the Dirichlet-to-Neumann operator N_V or N_a is known on Γ_N ⊂ ∂Ω.
- Some known (positive) results:
 - Izakov ('07): Schrödinger case with $\Gamma_N = \partial \Omega \setminus \Gamma_D$ and Γ_N is contained in a hyperplan,
 - Kenig-Sjostrand-Uhlmann ('07): Γ_N is a neighborhood of
 - $\{x \in \partial \Omega : (x x_0) . n(x) \leq 0\}$ for some x_0 ,
 - Imanuvilov-Uhlmann-Yamamoto ('10): $n = 2, V_1, V_2$ smooth and $\Gamma_N = \partial \Omega \setminus \Gamma_D$.
 - Other results by Kenig, Uhlmann, Dos Santos, Sjöstrand, Salo,...

Calderon's inverse problem for partial data is in general open for $n \ge 3$ both for Schrödinger and conductivity cases.

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Let $L_a = -\sum_{k,j} div(a_{kj}\nabla)$ and consider the full data ($\Gamma_N = \partial\Omega$). One defines the Dirichlet-to-Neumann operator as before:

$$\begin{cases} L_a u = 0 \text{ in } \Omega, u \in H^1(\Omega) \\ u = \varphi \text{ on } \partial \Omega \end{cases}$$

$$\mathcal{N}_{a}\varphi := \frac{\partial_{L_{a}}u}{\partial n} = \sum_{j=1}^{d} \sum_{k=1}^{n} a_{kj}\partial_{k}u.n_{j}$$

Let $L_a = -\sum_{k,j} div(a_{kj}\nabla)$ and consider the full data ($\Gamma_N = \partial\Omega$). One defines the Dirichlet-to-Neumann operator as before:

$$\left\{ \begin{array}{l} L_a u = 0 \ \text{ in } \Omega, u \in H^1(\Omega) \\ u = \varphi \ \text{ on } \partial \Omega \end{array} \right.$$

$$\mathcal{N}_{a}\varphi := \frac{\partial_{L_{a}}u}{\partial n} = \sum_{j=1}^{d} \sum_{k=1}^{n} a_{kj}\partial_{k}u.n_{j}$$

- Lee-Uhlmann ('89): a_{kj} are real analytic then uniqueness up to diffeomorphism holds ($n \ge 3$),

Let $L_a = -\sum_{k,j} div(a_{kj}\nabla)$ and consider the full data ($\Gamma_N = \partial\Omega$). One defines the Dirichlet-to-Neumann operator as before:

$$\left\{ \begin{array}{l} L_a u = 0 \ \text{ in } \Omega, u \in H^1(\Omega) \\ u = \varphi \ \text{ on } \partial \Omega \end{array} \right.$$

$$\mathcal{N}_{a}\varphi := rac{\partial_{L_{a}}u}{\partial n} = \sum_{j=1}^{d}\sum_{k=1}^{n}a_{kj}\partial_{k}u.n_{j}$$

- Lee-Uhlmann ('89): a_{kj} are real analytic then uniqueness up to diffeomorphism holds ($n \ge 3$),

- Astala-Lassas-Päivärinta ('05): Uniqueness up to a diffeomorphism (n = 2 and L^{∞} coefficients),

Let $L_a = -\sum_{k,j} div(a_{kj}\nabla)$ and consider the full data ($\Gamma_N = \partial\Omega$). One defines the Dirichlet-to-Neumann operator as before:

$$\begin{cases} L_a u = 0 \text{ in } \Omega, u \in H^1(\Omega) \\ u = \varphi \text{ on } \partial \Omega \end{cases}$$

$$\mathcal{N}_{a}\varphi := rac{\partial_{L_{a}}u}{\partial n} = \sum_{j=1}^{d}\sum_{k=1}^{n}a_{kj}\partial_{k}u.n_{j}$$

- Lee-Uhlmann ('89): a_{kj} are real analytic then uniqueness up to diffeomorphism holds ($n \ge 3$),

- Astala-Lassas-Päivärinta ('05): Uniqueness up to a diffeomorphism (n = 2 and L^{∞} coefficients),

- Behrndt-Rohleder ('12): $a = (a_{kj}), b = (b_{kj})$ Lipschitz, $\Gamma \subset \partial\Omega$ and the Dirichlet-to-Neumann operators $\mathcal{N}_a(\lambda) = \mathcal{N}_b(\lambda)$ on Γ and λ in a set having an accumulation point ($\mathcal{N}_a(\lambda)$ is the Dirichlet-to-Neumann operator for $L_a - \lambda I$). Then L_a and L_b , subject to Dirichlet boundary conditions, are unitarily equivalent, i.e. $L_a = \mathcal{U}L_b\mathcal{U}^{-1}, \mathcal{U}$ is a unitary operator on $L^2(\Omega)$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Suppose that Ω is a bounded Lipchitz domain of \mathbb{R}^d with $d \ge 2$. Let Γ_0 be a closed subset of $\partial\Omega$ and $\Gamma_1 = \partial\Omega \setminus \Gamma_0$.

Suppose that Ω is a bounded Lipchitz domain of \mathbb{R}^d with $d \ge 2$. Let Γ_0 be a closed subset of $\partial\Omega$ and $\Gamma_1 = \partial\Omega \setminus \Gamma_0$.

Let $a = \{a_{kj}, a_0\}$ and $b = \{b_{kj}, b_0\}$ be bounded functions on Ω such that a_{kj} and b_{kj} satisfy the usual ellipticity condition. If $d \ge 3$ we assume in addition that the coefficients a_{kj}, b_{kj}, a_0, b_0 are Lipschitz continuous.

Suppose that Ω is a bounded Lipchitz domain of \mathbb{R}^d with $d \ge 2$. Let Γ_0 be a closed subset of $\partial\Omega$ and $\Gamma_1 = \partial\Omega \setminus \Gamma_0$. Let $a = \{a_{kj}, a_0\}$ and $b = \{b_{kj}, b_0\}$ be bounded functions on Ω such that a_{kj} and b_{kj} satisfy the usual ellipticity condition. If $d \ge 3$ we assume in addition that the coefficients a_{kj}, b_{kj}, a_0, b_0 are Lipschitz continuous. Suppose that $\mathcal{N}_a(\lambda) = \mathcal{N}_b(\lambda)$ on Γ_1 for all λ in a set having an accumulation point in $\rho(L_a^D) \cap \rho(L_b^D)$. Then:

Suppose that Ω is a bounded Lipchitz domain of \mathbb{R}^d with $d \ge 2$. Let Γ_0 be a closed subset of $\partial\Omega$ and $\Gamma_1 = \partial\Omega \setminus \Gamma_0$. Let $a = \{a_{kj}, a_0\}$ and $b = \{b_{kj}, b_0\}$ be bounded functions on Ω such that a_{kj} and b_{kj} satisfy the usual ellipticity condition. If $d \ge 3$ we assume in addition that the coefficients a_{kj}, b_0, b_0 are Lipschitz continuous. Suppose that $\mathcal{N}_a(\lambda) = \mathcal{N}_b(\lambda)$ on Γ_1 for all λ in a set having an accumulation point in $\rho(L^D_a) \cap \rho(L^D_b)$. Then:

i) The operators L_a and L_b endowed with Robin boundary conditions are unitarily equivalent.

Suppose that Ω is a bounded Lipchitz domain of \mathbb{R}^d with $d \geq 2$. Let Γ_0 be a closed subset of $\partial\Omega$ and $\Gamma_1 = \partial\Omega \setminus \Gamma_0$.

Let $a = \{a_{kj}, a_0\}$ and $b = \{b_{kj}, b_0\}$ be bounded functions on Ω such that a_{kj} and b_{kj} satisfy the usual ellipticity condition. If $d \ge 3$ we assume in addition that the coefficients a_{kj}, b_{kj}, a_0, b_0 are Lipschitz continuous.

Suppose that $\mathcal{N}_{a}(\lambda) = \mathcal{N}_{b}(\lambda)$ on Γ_{1} for all λ in a set having an accumulation point in $\rho(L_{a}^{D}) \cap \rho(L_{b}^{D})$. Then:

i) The operators L_a and L_b endowed with Robin boundary conditions are unitarily equivalent.

ii) The operators L_a and L_b endowed with mixed boundary conditions (Dirichlet on Γ_0 and Neumann on Γ_1) are unitarily equivalent.

Suppose that Ω is a bounded Lipchitz domain of \mathbb{R}^d with $d \geq 2$. Let Γ_0 be a closed subset of $\partial\Omega$ and $\Gamma_1 = \partial\Omega \setminus \Gamma_0$.

Let $a = \{a_{kj}, a_0\}$ and $b = \{b_{kj}, b_0\}$ be bounded functions on Ω such that a_{kj} and b_{kj} satisfy the usual ellipticity condition. If $d \ge 3$ we assume in addition that the coefficients a_{kj}, b_{kj}, a_0, b_0 are Lipschitz continuous.

Suppose that $\mathcal{N}_a(\lambda) = \mathcal{N}_b(\lambda)$ on Γ_1 for all λ in a set having an accumulation point in $\rho(L_a^D) \cap \rho(L_b^D)$. Then:

i) The operators L_a and L_b endowed with Robin boundary conditions are unitarily equivalent.

ii) The operators L_a and L_b endowed with mixed boundary conditions (Dirichlet on Γ_0 and Neumann on Γ_1) are unitarily equivalent.

iii) The operators L_a and L_b endowed with Dirichlet boundary conditions are unitarily equivalent.

Suppose that Ω is a bounded Lipchitz domain of \mathbb{R}^d with $d \ge 2$. Let Γ_0 be a closed subset of $\partial\Omega$ and $\Gamma_1 = \partial\Omega \setminus \Gamma_0$.

Let $a = \{a_{kj}, a_0\}$ and $b = \{b_{kj}, b_0\}$ be bounded functions on Ω such that a_{kj} and b_{kj} satisfy the usual ellipticity condition. If $d \ge 3$ we assume in addition that the coefficients a_{kj}, b_{kj}, a_0, b_0 are Lipschitz continuous.

Suppose that $\mathcal{N}_{a}(\lambda) = \mathcal{N}_{b}(\lambda)$ on Γ_{1} for all λ in a set having an accumulation point in $\rho(L_{a}^{D}) \cap \rho(L_{b}^{D})$. Then:

i) The operators L_a and L_b endowed with Robin boundary conditions are unitarily equivalent.

ii) The operators L_a and L_b endowed with mixed boundary conditions (Dirichlet on Γ_0 and Neumann on Γ_1) are unitarily equivalent.

iii) The operators L_a and L_b endowed with Dirichlet boundary conditions are unitarily equivalent.

In addition, for Robin or mixed boundary conditions, the eigenfunctions associated to the same eigenvalue $\lambda \notin \sigma(L_a^D) = \sigma(L_b^D)$ coincide on the boundary of Ω .

- Unlike in [Berhndt-Rohleder], we do not assume any regularity in d = 2. Here $a_{kj}, a_k \in L^{\infty}$.

- Unlike in [Berhndt-Rohleder], we do not assume any regularity in d = 2. Here $a_{kj}, a_k \in L^{\infty}$.
- We extend the result of [Berhndt-Rohleder] to deal with other boundary conditions (Robin and mixed ones).

- Unlike in [Berhndt-Rohleder], we do not assume any regularity in d = 2. Here $a_{kj}, a_k \in L^{\infty}$.

- We extend the result of [Berhndt-Rohleder] to deal with other boundary conditions (Robin and mixed ones).

- The meaning of the latest assertion is: for every $\lambda \in \sigma(L_a^{\mu}) = \sigma(L_b^{\mu})$ with $\lambda \notin \sigma(L_a^D) = \sigma(L_b^D)$, the sets $\{\text{Tr}(u), u \in \text{Ker}(\lambda I - L_a^{\mu})\}$ and $\{\text{Tr}(v), v \in \text{Ker}(\lambda I - L_b^{\mu})\}$ coincide.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Let $a_{kj} = a_{jk}, a_0 \in L^{\infty}(\Omega, \mathbb{R})$ with the usual ellipticity condition:

$$\sum_{k,j=1}^{n} a_{kj}(x)\xi_k\xi_j \geq \delta |\xi|^2 \text{ a.e.} x \in \Omega \, \forall \xi \in \mathbb{R}^n (\delta > 0).$$

(ロ)、(型)、(E)、(E)、 E、のQの

Let $a_{kj} = a_{jk}, a_0 \in L^{\infty}(\Omega, \mathbb{R})$ with the usual ellipticity condition:

$$\sum_{k,j=1}^n a_{kj}(x)\xi_k\xi_j \geq \delta |\xi|^2 \ a.e.x \in \Omega \ \forall \xi \in \mathbb{R}^n (\delta > 0).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We define, using the method of bilinear forms, the elliptic operators $L_a = -div(a_{kj}\nabla) + a_0$ with:

Let $a_{ki} = a_{ik}, a_0 \in L^{\infty}(\Omega, \mathbb{R})$ with the usual ellipticity condition:

$$\sum_{k,j=1}^n a_{kj}(x)\xi_k\xi_j \geq \delta |\xi|^2 \ a.e.x \in \Omega \ \forall \xi \in \mathbb{R}^n (\delta > 0).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We define, using the method of bilinear forms, the elliptic operators $L_a = -div(a_{kj}\nabla) + a_0$ with:

• Dirichlet boundary conditions (L_a^D) : u = 0 on $\partial \Omega$.

Let $a_{kj} = a_{jk}, a_0 \in L^{\infty}(\Omega, \mathbb{R})$ with the usual ellipticity condition:

$$\sum_{k,j=1}^n a_{kj}(x)\xi_k\xi_j \geq \delta |\xi|^2 \text{ a.e.} x \in \Omega \, \forall \xi \in \mathbb{R}^n (\delta > 0).$$

We define, using the method of bilinear forms, the elliptic operators $L_a = -div(a_{kj}\nabla) + a_0$ with:

- Dirichlet boundary conditions (L_a^D) : u = 0 on $\partial \Omega$.
- Mixed boundary conditions (L^M_a):

$$\begin{cases} \operatorname{Tr}(u) = 0 & \text{on } \Gamma_0 \\ \sum_{j=1}^d \sum_{k=1}^n a_{kj} \partial_k u. n_j = 0 & \text{on } \Gamma_1. \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Basic material

Let $a_{kj} = a_{jk}, a_0 \in L^{\infty}(\Omega, \mathbb{R})$ with the usual ellipticity condition:

$$\sum_{k,j=1}^n a_{kj}(x)\xi_k\xi_j \geq \delta |\xi|^2 \ a.e.x \in \Omega \ \forall \xi \in \mathbb{R}^n (\delta > 0).$$

We define, using the method of bilinear forms, the elliptic operators $L_a = -div(a_{kj}\nabla) + a_0$ with:

- Dirichlet boundary conditions (L_a^D) : u = 0 on $\partial \Omega$.
- Mixed boundary conditions (L_a^M):

$$\begin{cases} \operatorname{Tr}(u) = 0 & \text{on } \Gamma_0 \\ \sum_{j=1}^d \sum_{k=1}^n a_{kj} \partial_k u. n_j = 0 & \text{on } \Gamma_1. \end{cases}$$

• Robin boundary condition (L_a^{μ}) :

$$\begin{cases} \operatorname{Tr}(u) = 0 \quad \text{on } \Gamma_0 \\ \sum_{j=1}^d \sum_{k=1}^n a_{kj} \partial_k u . n_j = \mu \operatorname{Tr}(u) \quad \text{on } \Gamma_1. \end{cases}$$

Let $V = \{u \in H^1(\Omega) : u = 0 \text{ on } \Gamma_0\}$ and $V_H := \{u \in V, L_a u = 0 \text{ in the weak sense}\}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Let $V = \{u \in H^1(\Omega) : u = 0 \text{ on } \Gamma_0\}$ and $V_H := \{u \in V, L_a u = 0 \text{ in the weak sense}\}.$ Then if $0 \notin \sigma(L_a^D)$:

 $V = V_H \oplus H_0^1(\Omega).$

Let $V = \{u \in H^1(\Omega) : u = 0 \text{ on } \Gamma_0\}$ and $V_H := \{u \in V, L_a u = 0 \text{ in the weak sense}\}.$ Then if $0 \notin \sigma(L_a^D)$: $V = V_H \oplus H_0^1(\Omega).$

This allows to define on $L^2(\partial \Omega)$ the symmetric form:

$$\mathfrak{b}(\varphi,\psi) := \sum_{k,j=1}^n \int_{\Omega} a_{kj} \partial_j u \partial_k v dx + \int_{\Omega} a_0 u v dx,$$

(日) (日) (日) (日) (日) (日) (日)

for $u, v \in V_H$ with $\varphi = \text{Tr}(u)$ and $\psi = \text{Tr}(v)$.

Let $V = \{u \in H^1(\Omega) : u = 0 \text{ on } \Gamma_0\}$ and $V_H := \{u \in V, L_a u = 0 \text{ in the weak sense}\}.$ Then if $0 \notin \sigma(L_a^D)$: $V = V_H \oplus H_0^1(\Omega).$

This allows to define on $L^2(\partial \Omega)$ the symmetric form:

$$\mathfrak{b}(\varphi,\psi):=\sum_{k,j=1}^n\int_\Omega a_{kj}\partial_j u\partial_k v dx+\int_\Omega a_0 uv dx,$$

for $u, v \in V_H$ with $\varphi = \text{Tr}(u)$ and $\psi = \text{Tr}(v)$. The operator associated with the form b is given by:

$$\mathcal{N}_{a}\varphi = \psi \Leftrightarrow \forall h \in \mathrm{Tr}(V) : \mathfrak{b}(\varphi, h) = \int_{\partial\Omega} \psi h d\sigma \Leftrightarrow$$
$$\varphi = 0 \text{ on } \Gamma_{0}, \ \psi = \sum_{k,j} a_{kj} \partial_{k} u.n_{j} \text{ on } \Gamma_{1} = \partial\Omega \setminus \Gamma_{0}.$$

A D F A 同 F A E F A E F A Q A

This is the Dirichlet-to-Neumann operator with partial data (given on Γ_1).

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$).

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$). The semigroup $e^{-t\mathcal{N}_a}$ acts on $L^2(\partial\Omega)$.

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$). The semigroup $e^{-t\mathcal{N}_a}$ acts on $L^2(\partial\Omega)$.

Theorem

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$). The semigroup $e^{-t\mathcal{N}_a}$ acts on $L^2(\partial\Omega)$.

Theorem

Suppose that $0 \notin \sigma(L_a^D)$ and that the self-adjoint operator L_a^D is positive.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$). The semigroup $e^{-t\mathcal{N}_a}$ acts on $L^2(\partial\Omega)$.

Theorem

Suppose that $0 \notin \sigma(L_a^D)$ and that the self-adjoint operator L_a^D is positive. a) The semigroup $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is positive (i.e., it maps non-negative functions of $L^2(\partial\Omega)$ into non-negative functions).

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$). The semigroup $e^{-t\mathcal{N}_a}$ acts on $L^2(\partial\Omega)$.

Theorem

Suppose that $0 \notin \sigma(L_a^D)$ and that the self-adjoint operator L_a^D is positive. a) The semigroup $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is positive (i.e., it maps non-negative functions of $L^2(\partial\Omega)$ into non-negative functions). b) Suppose that $a_0 \geq 0$. Then $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is a sub-Markovian semigroup.

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$). The semigroup $e^{-t\mathcal{N}_a}$ acts on $L^2(\partial\Omega)$.

Theorem

Suppose that $0 \notin \sigma(L_a^D)$ and that the self-adjoint operator L_a^D is positive. a) The semigroup $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is positive (i.e., it maps non-negative functions of $L^2(\partial\Omega)$ into non-negative functions). b) Suppose that $a_0 \geq 0$. Then $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is a sub-Markovian semigroup. c) Suppose that $a_0 \geq 0$. Then $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is non-decreasing as a function of Γ_1 .

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$). The semigroup $e^{-t\mathcal{N}_a}$ acts on $L^2(\partial\Omega)$.

Theorem

Suppose that $0 \notin \sigma(L_a^D)$ and that the self-adjoint operator L_a^D is positive. a) The semigroup $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is positive (i.e., it maps non-negative functions of $L^2(\partial\Omega)$ into non-negative functions). b) Suppose that $a_0 \geq 0$. Then $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is a sub-Markovian semigroup. c) Suppose that $a_0 \geq 0$. Then $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is non-decreasing as a function of Γ_1 . It is a non-increasing function of a_0 .

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$). The semigroup $e^{-t\mathcal{N}_a}$ acts on $L^2(\partial\Omega)$.

Theorem

Suppose that $0 \notin \sigma(L_a^D)$ and that the self-adjoint operator L_a^D is positive. a) The semigroup $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is positive (i.e., it maps non-negative functions of $L^2(\partial\Omega)$ into non-negative functions). b) Suppose that $a_0 \geq 0$. Then $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is a sub-Markovian semigroup. c) Suppose that $a_0 \geq 0$. Then $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is non-decreasing as a function of Γ_1 . It is a non-increasing function of a_0 .

The proof of a) and b) are based on the theory of Dirichlet forms.

$$H:=\overline{D(\mathfrak{b})}^{L^2(\partial\Omega)}=L^2(\Gamma_1)\oplus\{0\}.$$

Then \mathcal{N}_a is a self-adjoint operator on H (not densely defined on $L^2(\partial\Omega)$). The semigroup $e^{-t\mathcal{N}_a}$ acts on $L^2(\partial\Omega)$.

Theorem

Suppose that $0 \notin \sigma(L_a^D)$ and that the self-adjoint operator L_a^D is positive. a) The semigroup $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is positive (i.e., it maps non-negative functions of $L^2(\partial\Omega)$ into non-negative functions). b) Suppose that $a_0 \geq 0$. Then $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is a sub-Markovian semigroup. c) Suppose that $a_0 \geq 0$. Then $(e^{-t\mathcal{N}_a})_{t\geq 0}$ is non-decreasing as a function of Γ_1 . It is a non-increasing function of a_0 .

The proof of a) and b) are based on the theory of Dirichlet forms. Assertion c) is based on criteria for domination of semigroups ([Ou' 95]).

Ideas of proof of the main result

Ideas of proof of the main result

Set $\mathcal{N}_a(\lambda)$ the Dirichlet-to-Neumann operator with a_0 replaced by $a_0 - \lambda$ for $\lambda \notin \sigma(L_a^D)$.

One of the main ingredient in the proof is the following relationship between the spectra of the Dirichlet-to-Neumann operator and the elliptic operator with Robin boundary conditions.

(ロ) (同) (三) (三) (三) (○) (○)

One of the main ingredient in the proof is the following relationship between the spectra of the Dirichlet-to-Neumann operator and the elliptic operator with Robin boundary conditions.

(日) (日) (日) (日) (日) (日) (日)

Theorem

```
Let \mu, \lambda \in \mathbb{R} and \lambda \notin \sigma(L_a^D). Then:
```

One of the main ingredient in the proof is the following relationship between the spectra of the Dirichlet-to-Neumann operator and the elliptic operator with Robin boundary conditions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

Let $\mu, \lambda \in \mathbb{R}$ and $\lambda \notin \sigma(L_a^D)$. Then: 1) $\mu \in \sigma(\mathcal{N}_a(\lambda)) \Leftrightarrow \lambda \in \sigma(L_a^\mu)$.

One of the main ingredient in the proof is the following relationship between the spectra of the Dirichlet-to-Neumann operator and the elliptic operator with Robin boundary conditions.

Theorem

Let $\mu, \lambda \in \mathbb{R}$ and $\lambda \notin \sigma(L_a^D)$. Then: 1) $\mu \in \sigma(\mathcal{N}_a(\lambda)) \Leftrightarrow \lambda \in \sigma(L_a^{\mu})$. In addition, if $u \in Ker(\lambda - L_a^{\mu})$, $u \neq 0$ then $\varphi := Tr(u) \in Ker(\mu - \mathcal{N}_a(\lambda))$ and $\varphi \neq 0$.

One of the main ingredient in the proof is the following relationship between the spectra of the Dirichlet-to-Neumann operator and the elliptic operator with Robin boundary conditions.

Theorem

Let $\mu, \lambda \in \mathbb{R}$ and $\lambda \notin \sigma(L_a^D)$. Then: 1) $\mu \in \sigma(\mathcal{N}_a(\lambda)) \Leftrightarrow \lambda \in \sigma(L_a^\mu)$. In addition, if $u \in \text{Ker}(\lambda - L_a^\mu)$, $u \neq 0$ then $\varphi := \text{Tr}(u) \in \text{Ker}(\mu - \mathcal{N}_a(\lambda))$ and $\varphi \neq 0$. Conversely, if $\varphi \in \text{Ker}(\mu - \mathcal{N}_a(\lambda))$, $\varphi \neq 0$, then there exists $u \in \text{Ker}(\lambda - L_a^\mu)$, $u \neq 0$ such that $\varphi = \text{Tr}(u)$.

One of the main ingredient in the proof is the following relationship between the spectra of the Dirichlet-to-Neumann operator and the elliptic operator with Robin boundary conditions.

Theorem

Let $\mu, \lambda \in \mathbb{R}$ and $\lambda \notin \sigma(L_a^D)$. Then: 1) $\mu \in \sigma(\mathcal{N}_a(\lambda)) \Leftrightarrow \lambda \in \sigma(L_a^{\mu})$. In addition, if $u \in \text{Ker}(\lambda - L_a^{\mu})$, $u \neq 0$ then $\varphi := \text{Tr}(u) \in \text{Ker}(\mu - \mathcal{N}_a(\lambda))$ and $\varphi \neq 0$. Conversely, if $\varphi \in \text{Ker}(\mu - \mathcal{N}_a(\lambda))$, $\varphi \neq 0$, then there exists $u \in \text{Ker}(\lambda - L_a^{\mu})$, $u \neq 0$ such that $\varphi = \text{Tr}(u)$. 2) dim $\text{Ker}(\mu - \mathcal{N}_a(\lambda)) = \dim \text{Ker}(\lambda - L_a^{\mu})$.

One of the main ingredient in the proof is the following relationship between the spectra of the Dirichlet-to-Neumann operator and the elliptic operator with Robin boundary conditions.

Theorem

Let $\mu, \lambda \in \mathbb{R}$ and $\lambda \notin \sigma(L_a^D)$. Then: 1) $\mu \in \sigma(\mathcal{N}_a(\lambda)) \Leftrightarrow \lambda \in \sigma(L_a^{\mu})$. In addition, if $u \in \text{Ker}(\lambda - L_a^{\mu})$, $u \neq 0$ then $\varphi := \text{Tr}(u) \in \text{Ker}(\mu - \mathcal{N}_a(\lambda))$ and $\varphi \neq 0$. Conversely, if $\varphi \in \text{Ker}(\mu - \mathcal{N}_a(\lambda))$, $\varphi \neq 0$, then there exists $u \in \text{Ker}(\lambda - L_a^{\mu})$, $u \neq 0$ such that $\varphi = \text{Tr}(u)$. 2) dim $\text{Ker}(\mu - \mathcal{N}_a(\lambda)) = \dim \text{Ker}(\lambda - L_a^{\mu})$.

Proof:

$$S: \operatorname{Ker}(\lambda - L^{\mu}_{a}) \to \operatorname{Ker}(\mu - \mathcal{N}_{a}(\lambda)), \ u \mapsto \operatorname{Tr}(u)$$

is an isomorphism.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma

For every $\lambda \notin \sigma(L_a^D) \cup \sigma(L_b^D)$

$$\mathcal{N}_{a}(\lambda) = \mathcal{N}_{b}(\lambda).$$

Based on the fact that $\lambda \mapsto \mathcal{N}_a(\lambda)$ is a meromorphic function with poles $\sigma(L_a^D)$.

Lemma

For every $\lambda \notin \sigma(L_a^D) \cup \sigma(L_b^D)$

$$\mathcal{N}_{a}(\lambda) = \mathcal{N}_{b}(\lambda).$$

Based on the fact that $\lambda \mapsto \mathcal{N}_a(\lambda)$ is a meromorphic function with poles $\sigma(L_a^D)$.

Set
$$\sigma(\mathcal{L}^{\mu}_{a}) := \{\lambda^{\mu}_{a,1} \leq \lambda^{\mu}_{a,2} \leq \ldots\}$$
 and $\sigma(\mathcal{L}^{\mu}_{b}) := \{\lambda^{\mu}_{b,1} \leq \lambda^{\mu}_{b,2} \leq \ldots\}$.

Lemma

For every $\lambda \notin \sigma(L_a^D) \cup \sigma(L_b^D)$

$$\mathcal{N}_{a}(\lambda) = \mathcal{N}_{b}(\lambda).$$

Based on the fact that $\lambda \mapsto \mathcal{N}_a(\lambda)$ is a meromorphic function with poles $\sigma(L_a^D)$.

Set
$$\sigma(\mathcal{L}_{a}^{\mu}) := \{\lambda_{a,1}^{\mu} \leq \lambda_{a,2}^{\mu} \leq\}$$
 and $\sigma(\mathcal{L}_{b}^{\mu}) := \{\lambda_{b,1}^{\mu} \leq \lambda_{b,2}^{\mu} \leq\}$.
Let $\lambda = \lambda_{a,k}^{\mu} \in \sigma(\mathcal{L}_{a}^{\mu}) \setminus \sigma(\mathcal{L}_{a}^{D}) \cup \sigma(\mathcal{L}_{b}^{D})$. By the previous theorem,
 $\mu \in \sigma(\mathcal{N}_{a}(\lambda))$

Lemma

For every $\lambda \notin \sigma(L_a^D) \cup \sigma(L_b^D)$

$$\mathcal{N}_{a}(\lambda) = \mathcal{N}_{b}(\lambda).$$

Based on the fact that $\lambda \mapsto \mathcal{N}_a(\lambda)$ is a meromorphic function with poles $\sigma(L_a^D)$.

Set
$$\sigma(L_a^{\mu}) := \{\lambda_{a,1}^{\mu} \le \lambda_{a,2}^{\mu} \le ...\}$$
 and $\sigma(L_b^{\mu}) := \{\lambda_{b,1}^{\mu} \le \lambda_{b,2}^{\mu} \le ...\}$.
Let $\lambda = \lambda_{a,k}^{\mu} \in \sigma(L_a^{\mu}) \setminus \sigma(L_a^{D}) \cup \sigma(L_b^{D})$. By the previous theorem,
 $\mu \in \sigma(\mathcal{N}_a(\lambda)) = \sigma(\mathcal{N}_b(\lambda))$ and hence $\lambda \in \sigma(L_b^{\mu})$ by the same theorem.
Thus, $\lambda = \lambda_{a,k}^{\mu} = \lambda_{b,j}^{\mu}$ for some $j \ge 1$.

Lemma

For every $\lambda \notin \sigma(L_a^D) \cup \sigma(L_b^D)$

$$\mathcal{N}_{a}(\lambda) = \mathcal{N}_{b}(\lambda).$$

Based on the fact that $\lambda \mapsto \mathcal{N}_a(\lambda)$ is a meromorphic function with poles $\sigma(L_a^D)$.

Set
$$\sigma(L_a^{\mu}) := \{\lambda_{a,1}^{\mu} \le \lambda_{a,2}^{\mu} \le ...\}$$
 and $\sigma(L_b^{\mu}) := \{\lambda_{b,1}^{\mu} \le \lambda_{b,2}^{\mu} \le ...\}$.
Let $\lambda = \lambda_{a,k}^{\mu} \in \sigma(L_a^{\mu}) \setminus \sigma(L_a^{D}) \cup \sigma(L_b^{D})$. By the previous theorem,
 $\mu \in \sigma(\mathcal{N}_a(\lambda)) = \sigma(\mathcal{N}_b(\lambda))$ and hence $\lambda \in \sigma(L_b^{\mu})$ by the same theorem.
Thus, $\lambda = \lambda_{a,k}^{\mu} = \lambda_{b,j}^{\mu}$ for some $j \ge 1$.

The second assertion of the same theorem, shows that the eigenvalues $\lambda_{a,k}^{\mu}$ and $\lambda_{b,i}^{\mu}$ have the same multiplicity.

Lemma

For every $\lambda \notin \sigma(L_a^D) \cup \sigma(L_b^D)$

$$\mathcal{N}_{a}(\lambda) = \mathcal{N}_{b}(\lambda).$$

Based on the fact that $\lambda \mapsto \mathcal{N}_a(\lambda)$ is a meromorphic function with poles $\sigma(L_a^D)$.

Set
$$\sigma(L_a^{\mu}) := \{\lambda_{a,1}^{\mu} \le \lambda_{a,2}^{\mu} \le ...\}$$
 and $\sigma(L_b^{\mu}) := \{\lambda_{b,1}^{\mu} \le \lambda_{b,2}^{\mu} \le ...\}$.
Let $\lambda = \lambda_{a,k}^{\mu} \in \sigma(L_a^{\mu}) \setminus \sigma(L_a^{D}) \cup \sigma(L_b^{D})$. By the previous theorem,
 $\mu \in \sigma(\mathcal{N}_a(\lambda)) = \sigma(\mathcal{N}_b(\lambda))$ and hence $\lambda \in \sigma(L_b^{\mu})$ by the same theorem.
Thus, $\lambda = \lambda_{a,k}^{\mu} = \lambda_{b,j}^{\mu}$ for some $j \ge 1$.

The second assertion of the same theorem, shows that the eigenvalues $\lambda_{a,k}^{\mu}$ and $\lambda_{b,j}^{\mu}$ have the same multiplicity.

Next we prove

Lemma

$$\lambda_{b,1}^{\mu} \leq \lambda_{b,2}^{\mu} \leq \cdots \leq \lambda_{b,k}^{\mu} \leq \cdots \leq \lambda_{b,j}^{\mu} = \lambda_{a,k}^{\mu}.$$

Each $\lambda_{b,m}^{\mu}$ coincides with an eigenvalue of L_a^{μ} (with the same multiplicity) and hence $\lambda_{a,k}^{\mu}$ is (at least) the *j*-th eigenvalue of L_a^{μ} with j > k which is not possible.

Lemma

For each k, $\mu \mapsto \lambda_{a,k}^{\mu}$ is strictly decreasing on \mathbb{R} and $\lambda_{a,k}^{\mu} \to -\infty$ as $\mu \to +\infty$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

$$\lambda_{b,1}^{\mu} \leq \lambda_{b,2}^{\mu} \leq \cdots \leq \lambda_{b,k}^{\mu} \leq \cdots \leq \lambda_{b,j}^{\mu} = \lambda_{a,k}^{\mu}.$$

Each $\lambda_{b,m}^{\mu}$ coincides with an eigenvalue of L_a^{μ} (with the same multiplicity) and hence $\lambda_{a,k}^{\mu}$ is (at least) the *j*-th eigenvalue of L_a^{μ} with j > k which is not possible.

Lemma

For each k, $\mu \mapsto \lambda_{a,k}^{\mu}$ is strictly decreasing on \mathbb{R} and $\lambda_{a,k}^{\mu} \to -\infty$ as $\mu \to +\infty$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- $\mu \mapsto \lambda^{\mu}_{a,k}$ is non-increasing by the min-max principle.

$$\lambda_{b,1}^{\mu} \leq \lambda_{b,2}^{\mu} \leq \cdots \leq \lambda_{b,k}^{\mu} \leq \cdots \leq \lambda_{b,j}^{\mu} = \lambda_{a,k}^{\mu}.$$

Each $\lambda_{b,m}^{\mu}$ coincides with an eigenvalue of L_a^{μ} (with the same multiplicity) and hence $\lambda_{a,k}^{\mu}$ is (at least) the *j*-th eigenvalue of L_a^{μ} with j > k which is not possible.

Lemma

For each k, $\mu \mapsto \lambda_{a,k}^{\mu}$ is strictly decreasing on \mathbb{R} and $\lambda_{a,k}^{\mu} \to -\infty$ as $\mu \to +\infty$.

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

- $\mu \mapsto \lambda^{\mu}_{ak}$ is non-increasing by the min-max principle.
- Suppose $\mu \mapsto \lambda_{a,k}^{\mu} = \lambda$ for $\mu \in [\alpha, \beta]$ (for some $\alpha < \beta$).

$$\lambda_{b,1}^{\mu} \leq \lambda_{b,2}^{\mu} \leq \cdots \leq \lambda_{b,k}^{\mu} \leq \cdots \leq \lambda_{b,j}^{\mu} = \lambda_{a,k}^{\mu}.$$

Each $\lambda_{b,m}^{\mu}$ coincides with an eigenvalue of L_a^{μ} (with the same multiplicity) and hence $\lambda_{a,k}^{\mu}$ is (at least) the *j*-th eigenvalue of L_a^{μ} with j > k which is not possible.

Lemma

For each k, $\mu \mapsto \lambda_{a,k}^{\mu}$ is strictly decreasing on \mathbb{R} and $\lambda_{a,k}^{\mu} \to -\infty$ as $\mu \to +\infty$.

(日) (日) (日) (日) (日) (日) (日)

- $\mu \mapsto \lambda^{\mu}_{ak}$ is non-increasing by the min-max principle.

- Suppose $\mu \mapsto \lambda_{a,k}^{\mu} = \lambda$ for $\mu \in [\alpha, \beta]$ (for some $\alpha < \beta$). Then the corresponding eigenfunction $u^{\mu} \in H_0^1(\Omega)$:

$$\lambda_{b,1}^{\mu} \leq \lambda_{b,2}^{\mu} \leq \cdots \leq \lambda_{b,k}^{\mu} \leq \cdots \leq \lambda_{b,j}^{\mu} = \lambda_{a,k}^{\mu}.$$

Each $\lambda_{b,m}^{\mu}$ coincides with an eigenvalue of L_a^{μ} (with the same multiplicity) and hence $\lambda_{a,k}^{\mu}$ is (at least) the *j*-th eigenvalue of L_a^{μ} with j > k which is not possible.

Lemma

For each k, $\mu \mapsto \lambda_{a,k}^{\mu}$ is strictly decreasing on \mathbb{R} and $\lambda_{a,k}^{\mu} \to -\infty$ as $\mu \to +\infty$.

- $\mu \mapsto \lambda^{\mu}_{ak}$ is non-increasing by the min-max principle.

- Suppose $\mu \mapsto \lambda_{a,k}^{\mu} = \lambda$ for $\mu \in [\alpha, \beta]$ (for some $\alpha < \beta$). Then the corresponding eigenfunction $u^{\mu} \in H_0^1(\Omega)$:

$$\lambda \int_{\Omega} u^{\mu+h} \overline{u^{\mu}} \, dx = (L_a^{\mu+h} u^{\mu+h}, u^{\mu})$$

= $(L_a^{\mu} u^{\mu+h}, u^{\mu}) - h \int_{\Gamma_1} \operatorname{Tr}(u^{\mu+h}) \overline{\operatorname{Tr}(u^{\mu})} \, d\sigma$
= $\lambda \int_{\Omega} u^{\mu+h} \overline{u^{\mu}} \, dx - h \int_{\Gamma_1} \operatorname{Tr}(u^{\mu+h}) \overline{\operatorname{Tr}(u^{\mu})} \, d\sigma.$

Take $h \rightarrow 0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Back to the proof of the theorem:

(日) (日) (日) (日) (日) (日) (日)

Back to the proof of the theorem:

We have seen that $\lambda_{a,k}^{\mu} = \lambda_{a,k}^{\mu}$ (with the same multiplicity) whenever $\lambda_{a,k}^{\mu} \notin \sigma(L_a^D) \cup \sigma(L_b^D)$.

Back to the proof of the theorem:

We have seen that $\lambda_{a,k}^{\mu} = \lambda_{a,k}^{\mu}$ (with the same multiplicity) whenever $\lambda_{a,k}^{\mu} \notin \sigma(L_a^D) \cup \sigma(L_b^D)$.

Hence, there exists a discrete set $J \subset \mathbb{R}$ such that for $\lambda_{a,k}^{\mu} = \lambda_{b,k}^{\mu}$ for $\mu \in \mathbb{R} \setminus J$.

Back to the proof of the theorem:

We have seen that $\lambda_{a,k}^{\mu} = \lambda_{a,k}^{\mu}$ (with the same multiplicity) whenever $\lambda_{a,k}^{\mu} \notin \sigma(L_{a}^{D}) \cup \sigma(L_{b}^{D})$.

Hence, there exists a discrete set $J \subset \mathbb{R}$ such that for $\lambda_{a,k}^{\mu} = \lambda_{b,k}^{\mu}$ for $\mu \in \mathbb{R} \setminus J$. By continuity of $\mu \mapsto \lambda_{a,k}^{\mu}$ and $\lambda_{b,k}^{\mu}$, we obtain $\lambda_{a,k}^{\mu} = \lambda_{b,k}^{\mu}$ for all $\mu \in \mathbb{R}$ and the multiplicities are the same.

Back to the proof of the theorem:

We have seen that $\lambda_{a,k}^{\mu} = \lambda_{a,k}^{\mu}$ (with the same multiplicity) whenever $\lambda_{a,k}^{\mu} \notin \sigma(L_a^D) \cup \sigma(L_b^D)$.

Hence, there exists a discrete set $J \subset \mathbb{R}$ such that for $\lambda_{a,k}^{\mu} = \lambda_{b,k}^{\mu}$ for $\mu \in \mathbb{R} \setminus J$. By continuity of $\mu \mapsto \lambda_{a,k}^{\mu}$ and $\lambda_{b,k}^{\mu}$, we obtain $\lambda_{a,k}^{\mu} = \lambda_{b,k}^{\mu}$ for all $\mu \in \mathbb{R}$ and the multiplicities are the same.

Finally, the unitary operator \mathcal{U} s.t. $L_b^{\mu} = \mathcal{U}L_a^{\mu}\mathcal{U}^{-1}$ is constructed by:

$$\mathcal{U}: L^2(\Omega) \to L^2(\Omega), \ f_k \mapsto g_k$$

where (f_k) and (g_k) are the eigenfunctions of L_a^{μ} and L_b^{μ} (these are o.n. bases of $L^2(\Omega)$).

- For Dirichlet b.c. we prove

- For Dirichlet b.c. we prove

Lemma

For $\lambda \in \mathbb{R}$ large enough, $(\lambda + L_a^{\mu})^{-1}$ converges uniformly in $\mathcal{L}(L^2(\Omega))$ to $(\lambda + L_a^D)^{-1}$ as $\mu \to -\infty$.

- For Dirichlet b.c. we prove

Lemma

For $\lambda \in \mathbb{R}$ large enough, $(\lambda + L_a^{\mu})^{-1}$ converges uniformly in $\mathcal{L}(L^2(\Omega))$ to $(\lambda + L_a^D)^{-1}$ as $\mu \to -\infty$.

As a consequence, $\lambda_{a,k}^{\mu} \to \lambda_{a,k}^{D}$ as $\mu \to -\infty$, where $\sigma(L_a^D) = (\lambda_{a,k}^D)_k$. The same holds for L_b^D and the similarity of L_a^D and L_b^D follows.