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Introduction Physical motivations

Superconductivity
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Introduction The magnetic Laplacian

The aim: spectral analysis of the elliptic operator Ph,A,Ω = (−ih∇+ A)2

Ph,A,Ω = (−ih∇x + A(x))2 =

d∑
j=1

(hDxj + Aj (x))2, Dxj = −i∂xj

Dimension: d = 2
Ω ⊆ R2 open set
A = (A1,A2) ∈ C∞(Ω,R2);
h: the semiclassical parameter
B = ∇× A: the magnetic field

If we develope...

(−ih∇+ A)2 = −h2∆ − 2ihA · ∇ − ih∇A + A2

... it looks like a Schrödinger operator −h2∆ +V ... without electric potential...

Magnetic Laplacian = Schrödinger operator with magnetic field
Why is it interesting?

1 Physical applications in surface superconductivity (Ginzburg-Landau functional)
2 Different from the electric case(?)
3 Some connections with waveguides(?)
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Introduction A connection with (broken) waveguides

Existence of a bound state for an electric Laplacian...
The Lu-Pan operator: the self-adjoint Neumann realization on R2

+ of
LLP
θ = −∆ + Vθ, with Vθ(s, t) = t cos θ − s sin θ and θ ∈ (0, π)

Known result:
For all θ ∈ (0, π) there exists an eigenvalue of LLP

θ below the essential spectrum
wich equals [1,+∞).
K. Lu, X.-B. Pan, Surface nucleation of superconductivity in 3-dimensions. (1998).

B. Helffer, A. Morame, Magnetic bottles for the Neumann problem: the case
of dimension 3. (2002).

Figure : First eigenfunction of LLP
θ for θ ∈ { kπ

2 , k ∈ {0.9, 0.85, 0.8, 0.7}}
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Introduction A connection with (broken) waveguides

... recall Duclos and Exner’s result

Waveguide of width ε > 0 in 2D: {Φ(s, t) = γ(s) + tn(s), (s, t) ∈ R× (−ε, ε)}

Known result:
For a waveguide straight at infinity but not everywhere, there is always an eigen-
value below the essential spectrum cross section (in the case of a circular cross
section in dimensions two and three).

P. Duclos, P. Exner, Curvature-induced bound states in quantum waveguides in
two and three dimensions. (1995).
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Introduction A connection with (broken) waveguides

Magnetic waveguides

Waveguide: a tube Ωε ⊆ Rd about an unbounded curve γ
d: dimension ≥ 2
ε > 0 shrinking parameter
εω: the crosssection with ω ⊂ Rd−1 bounded and simply connected

Spectral analysis of the magnetic operator L
[d]
ε,bA with Dirichlet boundary :

L
[d]
ε,bA = (−i∇x + bA(x))2 on L2(Ωε,dx), b > 0

What is the spectral influence of a magnetic field on a waveguide?
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Introduction Framework

Spectral framework: Ω bounded, simply connected, with smooth boundary

We consider a self-adjoint realization of Ph,A,Ω which is the Friedrichs
extension of the quadratic form:

C∞(Ω,C) 3 u 7→ Qh,A,Ω =

∫
Ω

|(−ih∇+ A)u|2 dx

whose form domain V is: V = H1(Ω).

Domain of Ph,A,Ω: {u ∈ H2(Ω), (−ih∇+ A)u · n = 0 on ∂Ω︸ ︷︷ ︸
Neumann magnetic boundary condition

}

Spectrum of Ph,A,Ω : (λn(h))n∈N∗ = {λ1(h) ≤ λ2(h) ≤ · · · } ⊆ R+, discrete

Problematic: behaviour of the eigenvalues and the eigenfunctions when h→ 0

(λn(h), ψn,h) ∼
h→0

?
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Ginzburg-Landau parameter tends to infinity, Neumann boundary condition).
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Bonnaillie-Noël, Raymond (2015), (broken line of cancellation inside Ω, Neumann
boundary condition),
Attar, Helffer, Kachmar (2015), (minimizing of the energy when the
Ginzburg-Landau parameter tends to infinity, Neumann boundary condition).

Jean-Philippe MIQUEU (University of Rennes 1) Spectral analysis of (−ih∇ + A)2 when h → 0 17 May 2016 11 / 42



Introduction Interest of vanishing magnetic field

Why considering vanishing magnetic fields?

Mathematical reasons: analyze the spectral influence of the cancellation of the
magnetic field in the semiclassical limit.
Study of “magnetic waveguides”:

N. Dombrowski, F. Germinet, G. Raikov, Quantization of edge currents
along magnetic barriers and magnetic guides. (2011).

... inspired by the physical considerations:

J. Reijniers, , A. Matulis, K. Chang, F. Peeters, Confined magnetic
guiding orbit states. (2002).

M. Hara, A. Endo, S. Katsumoto, Y. Iye, Transport in two-dimensional
electron gas narrow channel with a magnetic field gradients. (2004).
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Magnetic field vanishing along a smooth and simple curve

1 Introduction

2 Magnetic field vanishing along a smooth and simple curve

3 Quadratic cancellation of the magnetic field

4 Conclusion: analogies with waveguides
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Magnetic field vanishing along a smooth and simple curve Assumptions

Γ Ω

Figure : Domain Ω and the (smooth) vanishing curve Γ.

Assumptions:
] (Γ ∩ ∂Ω) <∞ and Γ is non tangent to ∂Ω

|∇B(x)| 6= 0, ∀ x ∈ Γ
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Localisation phenomena : concentration of the modes when h→ 0

Ground state g1 of the electric Laplacian −h2∆ + |x|2 in R2:

g1(x) =
1√
h

exp
(
−|x|

2

2h

)
, h =

1
5
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Where does the first eigenfunction(s) localize in the semiclassical limit?
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Different ”areas” on Ω

(1) Ω\Γ

(2) ∂Ω\Γ

(3) Γ\∂Ω

(4) ∂Ω ∩ Γ Ωx(1)
j

x(1)
j

Ωx(2)
j

x(2)
j Ωx(3)

j

x(3)
j

Ωx(4)
j

x(4)
j
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

”Zoom” on areas

1 Localisation:

x = Φ(s, t)
2 Change of variable ⇒ Flat geometry:

s

t

(0, 0)
3 Scaling: X − xj =

x−xj
hβ

σ

τ

(0, 0)
4 Approximation on the whole (half) space + Linearisation :

Ph,A,Ωxj
∼

h→0
hpP1,Amod,R2

(+)

”Ph,A,Ω ∼
h→0
Ph,A,Ω

x(1)
j

⊕Ph,A,Ω
x(2)
j

⊕Ph,A,Ω
x(3)
j

⊕Ph,A,Ω
x(4)
j

”
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Ph,A,Ω

x(1)
j

⊕Ph,A,Ω
x(2)
j

⊕Ph,A,Ω
x(3)
j

⊕Ph,A,Ω
x(4)
j

”
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Model operator and operator of reference
Y

X
x(1)

j

The magnetic Laplacian P1,A,R2 ( h = 1 ) in the model case when B ≡ 1:

D2
Y + (DX − Y )2

By unitary transforms we are reduced to the harmonic oscillator:

H = D2
Y + Y 2, on R

Bottom of the spectrum of the operator H:

inf Sp(H) = 1
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Model operator and operator of reference

τ

σ

x(2)
j

The magnetic Laplacian P1,A,R2
+

( h = 1 ) in the model case when B ≡ 1:

D2
τ + (Dσ − τ)2

By unitary transforms we are reduced to the De Gennes operator:

G(ξ) = D2
τ + (τ − ξ)2 on R+, Neuman boundary condition

Bottom of the spectrum of the operator G(ξ):

µ1(ξ)= inf Sp(G(ξ))
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Model operator and operator of reference

σ

τ

x(3)
j

The magnetic Laplacian P1,A,R2 ( h = 1 ) in the model case when B(σ, τ) = τ :

D2
τ +

(
Dσ −

τ 2

2

)2

By unitary transforms we are reduced to the Montgomery operator:

M(η) = D2
τ +

(
τ 2

2 − η
)2

on R

Bottom of the spectrum of the operator M(η):

ν1(η) = inf Sp(M(η))
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Model operator and operator of reference
τ

σ
θ

x(4)
j

The magnetic Laplacian P1,A,R2
+

( h = 1 ) in the model case when:

B(σ, τ) = τ cos θ − σ sin θ.

We get the Pan and Kwek operator:

Kθ = D2
τ +

(
Dσ + στ sin θ − τ 2

2 cos θ
)2

on R2
+, Neumann boundary condition

Bottom of the spectrum of the operator Kθ:

inf Sp(Kθ) = ζθ1
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Properties of the Pan and Kwek operator

Proposition:

inf Spess(Kθ) = M0 = inf SpessP1,A,R2

Proposition:

ζ0
1 = ζπ1 = M0

ζθ1 < M0, for all θ ∈ (0, π)

X.-B. Pan, K.-H. Kwek, Schrödinger operators with non-degenerately vanishing
magnetic fields in bounded domains. (2002).

Proposition:
For all θ ∈ (0, π), ζθ1 is a eigenvalue and the associated eigenfunctions belong to
S (R2

+).
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Case Operator of reference Infimum of the spectrum

(1)
H = D2

Y + Y 2

on R
1

(2)
G(ξ) = D2

τ + (τ − ξ)2

on R+ with Neumann boundary condition
inf
ξ∈R

(µ1(ξ)) = Θ0

(3)
M(η) = D2

τ +
(
τ2

2 − η
)2

on R
inf
η∈R

(ν1(η)) = M0

(4)
Kθ = D2

τ +
(

Dσ + στ sin θ − τ2

2 cos θ
)2

on R2
+ with Neumann boundary condition

ζθ1

Numerical computations:
Θ0 = µ1 (ξ0) ≈ 0.5901, with ξ0 =

√
Θ0 ≈ 0.7682

M0 = ν1 (η0) ≈ 0.5698, with η0 ≈ 0.35

ζ
π
2

1 ≈ 0.5494
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Magnetic field vanishing along a smooth and simple curve Heuristic about the rule of model operators

Back to the operator Ph,A,Ω: summary of the operator hierarchy

x(`)
j ∈ Ω\Γ, ∂Ω\Γ, Γ\∂Ω, ∂Ω ∩ Γ

Case (`) Operator h dependant
Scaling

β, hp , R2
(+)

Infimum of

the spectrum

(1)
h2D2

y + (hDy − |B(x(1)
j )|y)2

on R2

1
2 , h, R2 1|B(x(1)

j )|h

(2)
h2D2

t + (hDs − |B(x(2)
j )|t)2

on R2
+ with Neumann boundary condition

1
2 , h, R2

+ Θ0|B(x(2)
j )|h

(3)
h2D2

t +
(

hDs − |∇B(x(3)
j )| t

2

2

)2

on R2

1
3 , h4/3, R2 M0|∇B(x(3)

j )|
2
3 h 4

3

(4)
h2D2

t +
(

hDs + |∇B(x(4)
j )|

(
st sin θ(x(4)

j )− t2

2 cos θ(x(4)
j )
))2

on R2
+ with Neumann boundary condition

1
3 , h4/3, R2

+ ζ
θ(x(4)

j )

1 |∇B(x(4)
j )|

2
3 h 4

3
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Magnetic field vanishing along a smooth and simple curve Statement of a (weak) result

Approximation of the bottom of the spectrum of Ph,A,Ω when h→ 0

Theorem:
Under the condition

inf
x∈∂Ω∩Γ

ζ
θ(x)
1 |∇B(x)|2/3 < M0 inf

x∈Ω∩Γ
|∇B(x)|2/3

we have two results:
1 Equivalent of the first eigenvalue

λ1(h) = h4/3 inf
x∈∂Ω∩Γ

ζ
θ(x)
1 |∇B(x)|2/3 +O(h5/3).

2 Exponential concentration of the first eigenvector
There exist C > 0, α > 0, h0 > 0, s. t. for all h ∈ (0, h0)∫

Ω

e2αh−1/3d(x,∂Ω ∩ Γ)|ψ1,h(x)|2 dx ≤ C‖ψ1,h‖2
L2(Ω).
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Magnetic field vanishing along a smooth and simple curve Numerical simulations

Computation of the first ten eigenvalues for decreasing values of h

Figure : First ten eigenvalues λn(h) rescaled by h−4/3 according to 1
h ∈ [20, 150], B(s, t) = s,

Ω = [− 3
2 ,

3
2 ]× [−1, 1]. Finite elements, 24× 16 quadrangular elements, Q10.
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Magnetic field vanishing along a smooth and simple curve Numerical simulations

First ten eigenmodes in modulus, h = 1
150

(1) 0.5370 (2) 0.5812 (3) 0.7905 (4) 1.1004 (5) 1.4603

(6) 1.4728 (7) 1.4750 (8) 1.7237 (9) 1.7738 (10) 1.8811

Figure : Modulus of ψn,h and numerical value of λn(h)h−4/3. Finite elements, 24× 16
quadrangular elements, Q10.
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Magnetic field vanishing along a smooth and simple curve Numerical simulations

Phase of the first ten eigenmodes, h = 1
150 : high oscillations in 1

h

(1) 0.5370 (2) 0.5812 (3) 0.7905 (4) 1.1004 (5) 1.4603

(6) 1.4728 (7) 1.4750 (8) 1.7237 (9) 1.7738 (10) 1.8811

Figure : Argument of ψn,h and numerical value of λn(h)h−4/3. Finite elements, 24× 16
quadrangular elements, degree Q10.
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Quadratic cancellation of the magnetic field

1 Introduction

2 Magnetic field vanishing along a smooth and simple curve

3 Quadratic cancellation of the magnetic field

4 Conclusion: analogies with waveguides
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Quadratic cancellation of the magnetic field Assumptions

Γ

Ωx0
ϑ(x0)

Figure : Domain Ω and the (smooth) vanishing curve Γ.

Assumptions:
] (Γ ∩ ∂Ω) <∞ and Γ is non tangent to ∂Ω

∃!x0 ∈ Γ\∂Ω with |∇B(x0)| = 0
|∇B(x)| 6= 0, ∀ x ∈ Γ\{x0}
Hessx0 B 6= 0 and ϑ(x0) ∈ (0, π)
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Quadratic cancellation of the magnetic field The model operator

s

t

ϑ = 2 tan ε

The magnetic Laplacian P1,A,R2 ( h = 1 ) in the model case when B(σ, τ) = t2 − ε2s2:

Xε = D2
τ +

(
Dσ + ε2σ2τ − τ 3

3

)2

Spectrum of Xε : (κn(ε))n∈N∗ = {κ1(ε) ≤ κ2(ε) ≤ · · · } ⊆ R+, discrete
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Quadratic cancellation of the magnetic field Statement of a (weak) result

Approximation of the bottom of the spectrum of Ph,A,Ω when h→ 0

Theorem:
We have:

1 Equivalent of the first eigenvalue

λ1(h) = CB
0 h3/2 +O(h7/4),

where CB
0 =Ξ(x0)1/2κ(ε(x0)) with Ξ(x) =

√
trt HessB(x)HessB(x)

2
√
ε(x)4+1

and ε(x0) given
by ϑ(x0) = 2 tan ε(x0).

2 Exponential concentration of the first eigenvector
There exist C > 0, α > 0 and h0 > 0, s. t. for all h ∈ (0, h0),∫

Ω

e2αh−1/4d(x,x0)|ψ1,h(x)|2 dx ≤ C‖ψ1,h‖2
L2(Ω).
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Quadratic cancellation of the magnetic field The small angle limit : partial semiclassical problem

Numerical simulations: bottom of the spectrum of the symbol Xα,ξ of Xε

Xα,ξ = D2
τ +

(
ξ + α2τ − τ 3

3

)2

, in R

Figure : The ”band function” %1(α, ξ) = inf
(α,ξ)∈R2

Sp
(

Xα,ξ
)

.
α

ξ
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Quadratic cancellation of the magnetic field The small angle limit : partial semiclassical problem

Numerical simulations: first mode

k = 1 k = 2 k = 3 k = 4 k = 5

k = 6 k = 7 k = 8 k = 9 k = 10

Figure : Modulus of the first mode ψn,h, for ε =

(
1√
2

)k
. Finite elements, 48× 6 quadrangular

elements, degree Q10.
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Quadratic cancellation of the magnetic field The small angle limit : partial semiclassical problem

Approximation of the bottom of the spectrum of Xε when ε→ 0

Theorem:

1 Existence of the minimum for the operator symbol
There exist (α0, ξ0) in a compact set of R2 s. t.

%1(α0, ξ0) = min
(α,ξ)∈R2

%1(α, ξ).

2 Equivalent for the bottom of the spectrum
For all n ≥ 1 such that κn(ε) = O(ε0), there exist C > 0 and h0 > 0 s. t.
for all h ∈ (0, h0)

|κn(ε)− %1(α0, ξ0)| ≤ Cε.
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Conclusion: analogies with waveguides
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Conclusion: analogies with waveguides The zeros locus (when h → 0) plays the rule of a waveguide

(Broken) Montgomery operator... recall (again) Duclos and Exner’s result

Straight line of cancellation on the whole plane:
D2
τ +

(
Dσ + στ sin θ − τ2

2 cos θ
)2

has essential spectrum.

Straight line of cancellation on the half-plane with Neumann boundary
condition:
D2
τ +

(
Dσ + στ sin θ − τ2

2 cos θ
)2

has at least one eigenvalue ∀θ ∈ (0, π).

Broken line of cancellation on the whole plane:
D2
τ +

(
Dσ + στ sin θ + sgn(t) τ

2

2 cos θ
)2
.

Numerical conjecture:
There exists θ0 ∈ (π4 ,

π
2 ) s. t. the firt Rayleigh quotient is equal to the infimum of

the essential spectrum (M0) for all θ ∈ [θ0,
π
2 ) and strictly less for all θ ∈ (0, θ0).

V. Bonnaillie-Noel, N. Raymond, Breaking a magnetic zero locus: model
operators and numerical approach. (2015).
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Conclusion: analogies with waveguides The magnetic field in 2D acts as the torsion in 3D

Limit ε→ 0 for the Dirichlet Laplacian on the tube Ωε

The Dirichlet Laplacian in dimension 2:
Known result:
The Dirichlet Laplacian on the tube Ωε converges (in a suitable sense) to:

Leff = −∂2
s −

κ(s)

4 on L2(γ, ds), (κ is the curvature).

P. Duclos, P. Exner, Curvature-induced bound states in quantum
waveguides in two and three dimensions. (1995).

The Dirichlet Laplacian in twisted waveguide in dimension 3:
Known result:
The Dirichlet Laplacian on the tube Ωε converges (in a suitable sense) to:

Leff = −∂2
s −

κ(s)

4 +C(ω)θ′(s)2 on L2(γ, ds),

where θ is the angle function and C(ω) is a positive constant whenever ω is not
a disk or annulus.

G. Bouchitte, M. L. Mascarenhas, L. Trabucho, On the curvature and
torsion effects inone dimensional waveguides. (2007).
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Conclusion: analogies with waveguides The magnetic field in 2D acts as the torsion in 3D

Limit ε→ 0 for L[2]
ε,bA = (−i∇x + bA(x))2on the tube Ωε, with b ∼ ε−1

L
[2]
ε,bA on L2(R× (−ε, ε),m(s, t)dsdt) ∼ L[2]

ε,bA on L2(R× (−ε, ε), dsdt)

∼ L[2]
ε,bAε on L2(R× (−1, 1),dsdτ)

Known result:
There exist K , ε0, C > 0 such that for all ε ∈ (0, ε0),∥∥∥∥(L[2]

ε,ε−1Aε
− ε−2λDir

1 (ω) + K
)−1
−
(
Leff,[2]
ε − ε−2λDir

1 (ω) + K
)−1
∥∥∥∥ ≤ Cε,

where λn(ω)Dir is the n-th eigenvalue of the Dirichlet Laplacian ∆Dir
ω on L2(ω),

and
Leff,[2]
ε = −ε−2∆Dir

ω + T [2] ,

T [2] = −∂2
s −

κ(s)

4 +
( 1

3 + 2
π2

)
B(γ(s))2 .

D. Krejčiř́ık, N. Raymond, Magnetic effects in curved quantum waveguides.
(2013).
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Conclusion: analogies with waveguides The magnetic field in 2D acts as the torsion in 3D

Counting of eigenvalues?
Known result:
For all waveguide with corner, there is a finite number of eigenvalues below the
threshold of the essential spectrum.
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Number of eigenvalue(s) of Kθ when θ → 0? Numerical answer:

Figure : Eigenvalues ζθn below the bottom of the essential spectrum, for θ ∈ { kπ
60 , 1 ≤ k ≤ 30}

V. Bonnaillie-Noel, N. Raymond, Breaking a magnetic zero locus: model
operators and numerical approach. (2015).

Jean-Philippe MIQUEU (University of Rennes 1) Spectral analysis of (−ih∇ + A)2 when h → 0 17 May 2016 41 / 42



Conclusion: analogies with waveguides The magnetic field in 2D acts as the torsion in 3D

Counting of eigenvalues?
Known result:
For all waveguide with corner, there is a finite number of eigenvalues below the
threshold of the essential spectrum.

M. Dauge, Y. Lafranche, N. Raymond, Quantum waveguides with corners.
(2012).

Number of eigenvalue(s) of Kθ when θ → 0?

Numerical answer:

Figure : Eigenvalues ζθn below the bottom of the essential spectrum, for θ ∈ { kπ
60 , 1 ≤ k ≤ 30}

V. Bonnaillie-Noel, N. Raymond, Breaking a magnetic zero locus: model
operators and numerical approach. (2015).

Jean-Philippe MIQUEU (University of Rennes 1) Spectral analysis of (−ih∇ + A)2 when h → 0 17 May 2016 41 / 42



Conclusion: analogies with waveguides The magnetic field in 2D acts as the torsion in 3D

Counting of eigenvalues?
Known result:
For all waveguide with corner, there is a finite number of eigenvalues below the
threshold of the essential spectrum.

M. Dauge, Y. Lafranche, N. Raymond, Quantum waveguides with corners.
(2012).

Number of eigenvalue(s) of Kθ when θ → 0? Numerical answer:

Figure : Eigenvalues ζθn below the bottom of the essential spectrum, for θ ∈ { kπ
60 , 1 ≤ k ≤ 30}

V. Bonnaillie-Noel, N. Raymond, Breaking a magnetic zero locus: model
operators and numerical approach. (2015).

Jean-Philippe MIQUEU (University of Rennes 1) Spectral analysis of (−ih∇ + A)2 when h → 0 17 May 2016 41 / 42



Conclusion: analogies with waveguides

Thank you!
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