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The story began long time ago. . .

when Yves explained to Anne-Sophie the proof* of Ricardo. . .

Since then, we explore the idea. . .

*: Weder, Absence of eigenvalues of the acoustic propagator in deformed wave

guides. Rocky Mountain J. Math. 18 (1988)
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What are “trapped modes” ?

Time-harmonic self-existing oscillations of a propagative medium which are
localized in space (L2).

Our model: acoustic media described by the Helmholtz equation

{
∆u+ ω2n2 u = 0 in D ⊂ R

d

+ non-dissipative b.c. if ∂D 6= ∅,

with ω ∈ R and n = n(x) ∈ R.

QUESTION : For given D and n, can one find (ω, u) ∈ R× L2(D) \ {0}
solution to the above problem?
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The case of a bounded cavity D

=⇒ infinite sequence of trapped modes

=⇒ eigenfrequencies ωn → +∞ (= discrete spectrum of n−2∆)

What about unbounded domains D?
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Opening the cavity:
immersion in a homogeneous medium
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Opening the cavity:
immersion in a homogeneous medium

Rellich (1943) uniqueness theorem : for R > 0,

if u ∈ L2(|x| > R) satisfies ∆u+ ω2u = 0 in |x| > R, then u ≡ 0.
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Opening the cavity:
immersion in a homogeneous medium

Rellich (1943) uniqueness theorem + unique continuation

=⇒ no trapped modes

=⇒ no eigenvalue embedded in the continuous spectrum R
+ of n−2∆.
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Opening the cavity: closed waveguide

=⇒ trapped modes may occur

=⇒ at most a discrete set of eigenfrequencies, embedded or not in the
continuous spectrum of −n−2∆
Evans, Levitin and Vassiliev, Witsch, Linton and McIver, Nazarov...
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Opening the cavity: open waveguide

=⇒ no more trapped modes

=⇒ no eigenvalue embedded in the continuous spectrum R
+ of −n−2∆

Weder (1991), DeBièvre and Pravica (1992)

Bonnet-Ben Dhia et al. (2009), H. (2014)
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What about a bended waveguide ?

=⇒ trapped modes generally occur

Duclos and Exner (1995), Krejcirik, Freitas, Dauge and Raymond, . . .
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Open bended waveguide

=⇒ no trapped modes

Bonnet-Ben Dhia, Fliss, H., Tonnoir (2016) ⊲ part 2 of the talk
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Multiple junctions of waveguides

No trapped modes Nobody knows, but. . .

⊲ part 3 of the talk
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The reason for that is that

we use Fourier representations in half-planes:

=⇒ OK if all angles between branches are greater than π/2
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A simple statement with a simple proof

Let θ ∈ (0, π/2) and Ω :=
{
(x, y) ∈ R

2 such that y > −|x| tan θ
}
:

Theorem (Bonnet-Ben Dhia, Fliss, H., Tonnoir (2016))

If u ∈ L2(Ω) satisfies ∆u+ ω2u = 0 in Ω, then u ≡ 0.

No boundary condition: Rellich type theorem

Optimal (false if θ = 0)

Simple proof (elementary tools)
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Consequences for trapped modes

This theorem, combined with a unique continuation principle, proves that
there are no trapped modes (= no embedded eigenvalues) in the following
configurations:
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General ideas of the proof

Two main ingredients (Weder (1988)):

1 First (easy) step: introduce û the partial Fourier transform of u in x

û(ξ, y) =
1√
2π

∫

R

u(x, y) e−ixξ dx

and use an energy argument to prove that û(ξ, 0) = 0 for |ξ| < ω.

2 Second step: prove that ξ 7−→ û(ξ, 0) is analytic in a vicinity of the real
axis, and conclude that û(ξ, 0) ≡ 0 for all ξ ∈ R, which implies that u ≡ 0
in Ω.
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1st (easy) step : Fourier representation in a half-plane

Consider the upper half-plane y > 0:

As u ∈ L2(Ω) satisfies ∆u+ ω2u = 0 in Ω, for a.e. ξ ∈ R, function û(ξ, ·)
belongs to L2(y > 0) and satisfies

d2û

dy2
+ (ω2 − ξ2)û = 0 for y > 0.

Since û(ξ, ·) ∈ L2(y > 0):

|ξ| > ω =⇒ û(ξ, y) = û(ξ, 0)e−
√

ξ2−ω2 y

|ξ| < ω =⇒ û(ξ, y) = 0
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1st (easy) step : Fourier representation in a half-plane

Using the inverse Fourier transform, we obtain

Fourier representation of u :

u(x, y) =
1√
2π

∫

|ξ|>ω

û(ξ, 0) e−
√

ξ2−ω2 y eiξx dξ for x ∈ R and y > 0.

This is a modal representation of u (superposition of y-evanescent modes)

Consequence of the finite energy (L2) assumption

û(ξ, 0) = 0 for |ξ| < ω ⇐⇒ no propagative components
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2nd step : analyticity

The idea is to write

û(ξ, 0) =
1√
2π

(∫ 0

−∞

u(x, 0) e−ixξ dx+

∫ +∞

0

u(x, 0) e−ixξ dx

)

and to express u(x, 0) using the previous Fourier representations in both

following half-planes:

For instance, for x > 0

u(x, 0) =
1√
2π

∫

|η|>ω

ϕ̂+(η) e−
√

η2−ω2 sin θ x eiη cos θ x dη

where ϕ̂+ denotes the Fourier transform of u|Σθ
.
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2nd step : analyticity

We get the following expression:

û(ξ, 0) =
1

2π

∑

±

∫

R±

∫

|η|>ω

ϕ̂±(η) e x (iη cos θ∓
√

η2−ω2 sin θ) dη e−i x ξ d x

where ϕ̂± denotes the Fourier transform of u|Σ±θ
.

By Fubini’s theorem and explicit integration in x , we get finally:

û(ξ, 0) =
1

2π

∑

±

∫

|η|>ω

ϕ̂±(η)

∓i(η cos θ − ξ) +
√

η2 − ω2 sin θ
dη

Is it an analytic function of ξ?
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2nd step : analyticity

By Lebesgue’s dominated convergence theorem, the function

û(ξ, 0) =
1

2π

∑

±

∫

|η|>ω

ϕ̂±(η)

∓i(η cos θ − ξ) +
√

η2 − ω2 sin θ
dη

is analytic in ξ outside the hyperbola below.

Proof: just notice that the denominator vanishes for some η if and only if ξ
belongs to the hyperbola.
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End of the proof

û(ξ, 0) is analytic on the yellow domain

it vanishes on the segment (−ω,+ω) (1st step)

=⇒ û(ξ, 0) = 0 for all ξ ∈ R (isolated zeros of an analytic function)

=⇒ u(x, y) = 0 in the half-plane R× R
+ (Fourier representation)

=⇒ u ≡ 0 in Ω (unique continuation)
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A slight correction...

To make this proof correct, one just has to make at the beginning a
translation of the x axis:

This provides the regularity of u(·, 0), and therefore the decay of û(·, 0), which
are required to apply Fubini and Lebesgue theorems.
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Absence of trapped modes

Theorem (Bonnet-Ben Dhia, Fliss, H. (some weeks ago))

If u ∈ L2(R2) satisfies ∆u+ n2ω2 u = 0 in R
2, then u ≡ 0.

=⇒ Basic tool : use generalized Fourier representations in the 3 hatched
half-planes (see Julian Ott’s talk, Thursday 9:00).
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Back to Fourier representation in a half-plane

If u ∈ L2 satisfies −∆u− ω2 u = 0 in {y > 0}, then

u(x, y) =

∫

|ξ|>ω

Fu(ξ, 0) e−
√

ξ2−ω2 y eiξx√
2π

dξ and Fu(ξ, 0) = 0 if |ξ| < ω.

To obtain this representation, write

−∆u− ω2 u =

(
− d2

dx2
− ω2

)

︸ ︷︷ ︸
A

u− d2u

dy2
and diagonalize A.
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Back to Fourier representation in a half-plane

• F diagonalizes the operator A = − d2

dx2
− ω2 in the sense that

FAϕ(ξ) = λξ F ϕ(ξ) where λξ = ξ2 − ω2.

• A is selfadjoint in L2(R) with purely continuous spectrum [−ω2,+∞[.

• F appears as an operator of decomposition on a family of generalized

eigenfunctions Φξ /∈ L2(R) of A :

Fϕ(ξ) =

∫

R

ϕ(x) Φξ(x) dx where Φξ(x) =
eixξ√
2π

satisfies AΦξ = λξ Φξ.

• F−1 is the operator of re-composition on this family:

F−1ϕ̂(x) =

∫

R

ϕ̂(ξ) Φξ(x) dξ.
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Generalized F̃ourier representation in a half-guide

Suppose u ∈ L2 satisfies ∆u+ n2(x)ω2 u = 0 in {y > 0}.

Write

−∆u− n2ω2 u =

(
− d2

dx2
− n2ω2

)

︸ ︷︷ ︸
Ã

u− d2u

dy2
and diagonalize Ã ?

=⇒ The generalized Fourier transform F̃ diagonalizes the operator Ã in the
sense that

F̃Ã ϕ(ξ) = λξ F̃ ϕ(ξ) where λξ = ξ2 − ω2.
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Generalized F̃ourier representation in a half-guide

Ã = − d2

dx2
− n2ω2 is selfadjoint in L2(R). Its spectrum is composed of

a continuous spectrum Λc = [−ω2,+∞[ (same as A),

a finite point spectrum Λp ⊂ ]−∞,−ω2[ (nonempty iff supn(x) > 1).

Construction of a complete spectral family
{
Φ̃ξ; ξ ∈ R ∪G

}
:

Generalized eigenfunctions for ξ ∈ R (i.e., λξ = ξ2 − ω2 ∈ Λc) :

Φ̃ξ = Φξ +Φscat
ξ /∈ L2(R)

︸ ︷︷ ︸
radiation modes

where

{
Ã Φ̃ξ = λξ Φ̃ξ

Φscat
ξ (x) = α±

ξ ei|ξ||x| if x → ±∞.

Eigenfunctions for ξ ∈ G = finite subset of iR+ (i.e., for each λξ ∈ Λp):

Φ̃ξ ∈ L2(R)︸ ︷︷ ︸
guided modes

where

{
Ã Φ̃ξ = λξ Φ̃ξ

‖Φ̃ξ‖L2(R) = 1.
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Generalized F̃ourier representation in a half-guide

Spectral theory yields

The operator of decomposition on the family {Φ̃ξ; ξ ∈ R ∪G} :

F̃ϕ(ξ) :=

∫

R

ϕ(x) Φ̃ξ(x) dx ∀ξ ∈ R ∪G,

extends to a unitary transformation from L2(Rx) to L2(Rξ)⊕ ℓ2(G).

F̃−1 = F∗ is the operator of re-composition on the family {Φ̃ξ} :

F̃−1ϕ̂ =

∫

R

ϕ̂(ξ) Φ̃ξ dξ +
∑

ξ∈G

ϕ̂(ξ) Φ̃ξ.

F̃ diagonalizes Ã in the sense that Ã = F̃−1λξ F̃ .

Moreover

For all x ∈ R, function ξ 7→ Φ̃ξ(x) extends to a meromorphic function of ξ ∈ C.
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Generalized F̃ourier representation in a half-guide

If u ∈ L2 satisfies ∆u+ n2(x)ω2 u = 0 in {y > 0}, then

u(x, y) =

∫

|ξ|>ω

F̃u(ξ, 0) e−
√

ξ2−ω2 y Φ̃ξ dξ

and F̃u(ξ, 0) = 0 if ξ ∈ ]− ω,+ω[ ∪ G.
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Proof of the absence of trapped modes

The generalized F̃ourier representation tells us that

û(ξ) :=

∫

R

u(x, 0) Φ̃ξ(x) dx vanishes if ξ ∈ ]− ω,+ω[

It remains to prove that ξ 7−→ û(ξ) is analytic in a vicinity of the real axis.
The idea:

û(ξ) =

∫ a

−∞

u(x, 0) Φ̃ξ(x) dx+

∫ b

a

u(x, 0) Φ̃ξ(x) dx+

∫ +∞

b

u(x, 0) Φ̃ξ(x) dx
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Proof of the absence of trapped modes

•
∫ b

a

u(x, 0) Φ̃ξ(x) dx is analytic near R since

{
ξ 7→ Φ̃ξ(x) meromorphic,

[a, b] bounded.

•
∫ +∞

b

u(x, 0) Φ̃ξ(x) dx =⇒ use the GFR in the right (R) half-guide:

u(x, 0) =

∫

|η|>ω

ϕ̂(R)(η) e−
√

η2−ω2 x sin θ Φ̃(R)
η (x cos θ) dη

and proceed as in §2. Recall that Φ̃ξ(x) =
eiξx√
2π

+ α±
ξ ei|ξ||x| if x → ±∞.
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Conclusion: open questions

• 2D multiple junctions with angle < π/2 :

• 3D multiple junctions

• scattering by junctions

• periodic waveguides

• • •
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THANK YOU

for your attention
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