Absence of trapped modes for a Y-shaped junction of open waveguides

Christophe Hazard

with Anne-Sophie Bonnet-Ben Dhia and Sonia Fliss

POEMS (Propagation d'Ondes: Etude Mathématique et Simulation) CNRS/ENSTA-ParisTech/INRIA, Palaiseau, France

Porquerolles – May 2016

The story began long time ago... when Yves explained to Anne-Sophie the proof* of Ricardo... Since then, we explore the idea...

*: Weder, Absence of eigenvalues of the acoustic propagator in deformed wave guides. Rocky Mountain J. Math. 18 (1988)

イロト イポト イヨト イヨト

1 Trapped modes in waveguides

2 A Rellich type theorem in a homogeneous medium

3 Y-shaped junction of waveguides

(ロ) (日) (日) (日) (日)

1 Trapped modes in waveguides

2 A Rellich type theorem in a homogeneous medium

3 Y-shaped junction of waveguides

イロト イヨト イヨト イヨト

What are "trapped modes" ?

Time-harmonic self-existing oscillations of a propagative medium which are localized in space (L^2) .

Our model: acoustic media described by the Helmholtz equation

$$\begin{cases} \Delta u + \omega^2 n^2 u = 0 & \text{in } D \subset \mathbb{R}^d \\ + \text{ non-dissipative b.c. if } \partial D \neq \emptyset, \end{cases}$$

with $\boldsymbol{\omega} \in \mathbb{R}$ and $n = n(x) \in \mathbb{R}$.

QUESTION : For given D and n, can one find $(\omega, u) \in \mathbb{R} \times L^2(D) \setminus \{0\}$ solution to the above problem?

イロト イポト イヨト イヨト

The case of a bounded cavity D

- \implies infinite sequence of trapped modes
- \implies eigenfrequencies $\omega_n \rightarrow +\infty$ (= discrete spectrum of $n^{-2}\Delta$)

What about **unbounded** domains D?

(D) (A) (A) (A)

Opening the cavity: immersion in a homogeneous medium

イロト イヨト イヨト イヨト

Opening the cavity: immersion in a homogeneous medium

Rellich (1943) uniqueness theorem : for R > 0,

if $u \in L^2(|x| > R)$ satisfies $\Delta u + \omega^2 u = 0$ in |x| > R, then $u \equiv 0$.

Deneuronallan Mari

(日) (日) (日) (日) (日)

Opening the cavity: immersion in a homogeneous medium

Rellich (1943) uniqueness theorem + unique continuation \implies no trapped modes

 \implies no eigenvalue embedded in the continuous spectrum \mathbb{R}^+ of $n^{-2}\Delta$.

uerolles – May 20

イロン イヨン イヨン

Opening the cavity: closed waveguide

\implies trapped modes may occur

⇒ at most a discrete set of eigenfrequencies, embedded or not in the continuous spectrum of $-n^{-2}\Delta$ Evans, Levitin and Vassiliev, Witsch, Linton and McIver, Nazarov...

(D) (A) (A)

Opening the cavity: open waveguide

\Rightarrow no more trapped modes

⇒ no eigenvalue embedded in the continuous spectrum \mathbb{R}^+ of $-n^{-2}\Delta$ Weder (1991), DeBièvre and Pravica (1992) Bonnet-Ben Dhia *et al.* (2009), H. (2014)

イロト イヨト イヨト イヨト

What about a bended waveguide ?

\Rightarrow trapped modes generally occur

Duclos and Exner (1995), Krejcirik, Freitas, Dauge and Raymond, ...

A B A B A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Open bended waveguide

 \Rightarrow no trapped modes

Bonnet-Ben Dhia, Fliss, H., Tonnoir (2016) \triangleright part 2 of the talk

Christophe Hazard (POEMS)

welles May 2016

イロト イヨト イヨト イヨト

Multiple junctions of waveguides

No trapped modes

 \triangleright part 3 of the talk

Nobody knows, but...

(ロ) (日) (日) (日) (日)

016 12 / 36

we use Fourier representations in half-planes:

\implies OK if all angles between branches are greater than $\pi/2$

1 Trapped modes in waveguides

2 A Rellich type theorem in a homogeneous medium

3 Y-shaped junction of waveguides

Christophe Hazard (POEMS) Trapped modes in open waveguides Porquerolles - May 2016 14 / 36

イロト イヨト イヨト イヨト

A simple statement with a simple proof

Let $\theta \in (0, \pi/2)$ and $\Omega := \{(x, y) \in \mathbb{R}^2 \text{ such that } y > -|x| \tan \theta\}$:

Theorem (Bonnet-Ben Dhia, Fliss, H., Tonnoir (2016))

If $u \in L^2(\Omega)$ satisfies $\Delta u + \omega^2 u = 0$ in Ω , then $u \equiv 0$.

- No boundary condition: Rellich type theorem
- Optimal (false if $\theta = 0$)
- Simple proof (elementary tools)

Consequences for trapped modes

This theorem, combined with a unique continuation principle, proves that there are no trapped modes (= no embedded eigenvalues) in the following configurations:

(D) (A) (A)

Two main ingredients (Weder (1988)):

Q First (easy) step: introduce \hat{u} the partial Fourier transform of u in x

$$\widehat{u}(\boldsymbol{\xi}, y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u(x, y) e^{-i\boldsymbol{x}\boldsymbol{\xi}} dx$$

and use an energy argument to prove that $\hat{u}(\xi, 0) = 0$ for $|\xi| < \omega$.

• Second step: prove that $\xi \mapsto \widehat{u}(\xi, 0)$ is analytic in a vicinity of the real axis, and conclude that $\widehat{u}(\xi, 0) \equiv 0$ for all $\xi \in \mathbb{R}$, which implies that $u \equiv 0$ in Ω .

イロト イポト イヨト イヨト

1st (easy) step : Fourier representation in a half-plane

Consider the upper half-plane y > 0:

• As $u \in L^2(\Omega)$ satisfies $\Delta u + \omega^2 u = 0$ in Ω , for a.e. $\xi \in \mathbb{R}$, function $\widehat{u}(\xi, \cdot)$ belongs to $L^2(y > 0)$ and satisfies

$$\frac{\mathrm{d}^2 \widehat{u}}{\mathrm{d} y^2} + (\omega^2 - \xi^2) \widehat{u} = 0 \quad \text{for } y > 0.$$

• Since $\widehat{u}(\boldsymbol{\xi}, \cdot) \in L^2(y > 0)$:

$$\begin{split} |\xi| > \omega &\implies \hat{u}(\xi, y) = \hat{u}(\xi, 0)e^{-\sqrt{\xi^2 - \omega^2} y} \\ |\xi| < \omega &\implies \hat{u}(\xi, y) = 0 \end{split}$$

Christophe Hazard (POEMS)

lav 2016

1st (easy) step : Fourier representation in a half-plane

Using the inverse Fourier transform, we obtain

Fourier representation of u:

$$u(x,y) = \frac{1}{\sqrt{2\pi}} \int_{|\xi| > \omega} \widehat{u}(\xi,0) \, e^{-\sqrt{\xi^2 - \omega^2} \, y} \, e^{i\xi x} \, \mathrm{d}\xi \quad \text{for } x \in \mathbb{R} \text{ and } y > 0.$$

This is a modal representation of u (superposition of y-evanescent modes)

Consequence of the finite energy (L^2) assumption

 $\widehat{u}(\xi, 0) = 0$ for $|\xi| < \omega \iff$ no propagative components

19 / 36

イロト イポト イヨト イヨト

2nd step : analyticity

The idea is to write

$$\widehat{u}(\xi,0) = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} u(x,0) \operatorname{e}^{-\mathrm{i}x\xi} \mathrm{d}x + \int_{0}^{+\infty} u(x,0) \operatorname{e}^{-\mathrm{i}x\xi} \mathrm{d}x \right)$$

and to express u(x,0) using the previous Fourier representations in both following half-planes:

For instance, for x > 0

$$u(x,0) = \frac{1}{\sqrt{2\pi}} \int_{|\eta| > \omega} \widehat{\varphi}^+(\eta) e^{-\sqrt{\eta^2 - \omega^2} \sin \theta x} e^{i\eta \cos \theta x} d\eta$$

where $\hat{\varphi}^+$ denotes the Fourier transform of $u_{|\Sigma_{\theta}}$.

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

2nd step : analyticity

We get the following expression:

$$\widehat{u}(\xi,0) = \frac{1}{2\pi} \sum_{\pm} \int_{\mathbb{R}^{\pm}} \int_{|\eta| > \omega} \widehat{\varphi}^{\pm}(\eta) e^{\mathbf{x} (i\eta \cos \theta \mp \sqrt{\eta^2 - \omega^2} \sin \theta)} d\eta e^{-i\mathbf{x} \cdot \xi} d\mathbf{x}$$

where $\hat{\varphi}^{\pm}$ denotes the Fourier transform of $u_{|\Sigma_{\pm\theta}}$.

By Fubini's theorem and explicit integration in x, we get finally:

$$\widehat{u}(\xi,0) = \frac{1}{2\pi} \sum_{\pm} \int_{|\eta| > \omega} \frac{\widehat{\varphi}^{\pm}(\eta)}{\mp i(\eta \cos \theta - \xi) + \sqrt{\eta^2 - \omega^2} \sin \theta} \,\mathrm{d}\eta$$

Is it an analytic function of ξ ?

Christophe Hazard (POEMS)

- May 2016 21 / 36

< ロト < 同ト < ヨト < ヨ)

2nd step : analyticity

By Lebesgue's dominated convergence theorem, the function

$$\widehat{u}(\boldsymbol{\xi}, 0) = \frac{1}{2\pi} \sum_{\pm} \int_{|\boldsymbol{\eta}| > \boldsymbol{\omega}} \frac{\widehat{\varphi}^{\pm}(\boldsymbol{\eta})}{\mp \mathrm{i}(\boldsymbol{\eta}\cos\theta - \boldsymbol{\xi}) + \sqrt{\boldsymbol{\eta}^2 - \boldsymbol{\omega}^2}\sin\theta} \,\mathrm{d}\boldsymbol{\eta}$$

is analytic in ξ outside the hyperbola below.

Proof: just notice that the denominator vanishes for some η if and only if ξ belongs to the hyperbola.

Christophe Hazard (POEMS) Trapped

May 2016

End of the proof

- $\hat{u}(\xi, 0)$ is analytic on the yellow domain
- it vanishes on the segment $(-\omega, +\omega)$ (1st step)

 $\implies \widehat{u}(\xi, 0) = 0 \text{ for all } \xi \in \mathbb{R} \quad (\text{isolated zeros of an analytic function})$ $\implies u(x, y) = 0 \text{ in the half-plane } \mathbb{R} \times \mathbb{R}^+ \quad (\text{Fourier representation})$ $\implies u \equiv 0 \text{ in } \Omega \quad (\text{unique continuation})$

(D) (A) (A) (A)

To make this proof correct, one just has to make at the beginning a translation of the x axis:

This provides the regularity of $u(\cdot, 0)$, and therefore the decay of $\hat{u}(\cdot, 0)$, which are required to apply Fubini and Lebesgue theorems.

1 Trapped modes in waveguides

2 A Rellich type theorem in a homogeneous medium

3 Y-shaped junction of waveguides

Christophe Hazard (POEMS) Trapped modes in open waveguides Porquerolles - May 2016 25 / 36

(ロ) (日) (日) (日) (日)

Absence of trapped modes

Theorem (Bonnet-Ben Dhia, Fliss, H. (some weeks ago))

If $u \in L^2(\mathbb{R}^2)$ satisfies $\Delta u + n^2 \omega^2 u = 0$ in \mathbb{R}^2 , then $u \equiv 0$.

 \implies Basic tool : use *generalized* Fourier representations in the 3 hatched half-planes (see Julian Ott's talk, Thursday 9:00).

(ロ) (日) (日) (日) (日)

26 / 36

Christophe Hazard (POEMS) Trapped modes in open waveguides Porquerolles – Ma

Back to \mathcal{F} ourier representation in a half-plane

If $u \in L^2$ satisfies $-\Delta u - \omega^2 u = 0$ in $\{y > 0\}$, then

$$u(x,y) = \int_{|\xi| > \omega} \mathcal{F}u(\xi,0) \, \operatorname{e}^{-\sqrt{\xi^2 - \omega^2} y} \frac{\operatorname{e}^{\operatorname{i}\xi x}}{\sqrt{2\pi}} \, \mathrm{d}\xi \quad \text{and} \quad \mathcal{F}u(\xi,0) = 0 \text{ if } |\xi| < \omega.$$

To obtain this representation, write

$$-\Delta u - \omega^2 u = \underbrace{\left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} - \omega^2\right)}_{A} u - \frac{\mathrm{d}^2 u}{\mathrm{d}y^2} \quad \text{and} \quad \underbrace{\mathrm{diagonalize} \ A}_{A}$$

Christophe Hazard (POEMS)

Trapped modes in open waveguides

Back to \mathcal{F} ourier representation in a half-plane

- \mathcal{F} diagonalizes the operator $A = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} \omega^2$ in the sense that $\mathcal{F}A \varphi(\xi) = \lambda_{\xi} \mathcal{F} \varphi(\xi)$ where $\lambda_{\xi} = \xi^2 - \omega^2$.
- A is selfadjoint in $L^2(\mathbb{R})$ with purely continuous spectrum $[-\omega^2, +\infty[$.

• \mathcal{F} appears as an operator of decomposition on a family of generalized eigenfunctions $\Phi_{\xi} \notin L^2(\mathbb{R})$ of A:

$$\mathcal{F}\varphi(\xi) = \int_{\mathbb{R}} \varphi(x) \,\overline{\Phi_{\xi}(x)} \,\mathrm{d}x \quad \text{where} \quad \Phi_{\xi}(x) = \frac{\mathrm{e}^{\mathrm{i}x\xi}}{\sqrt{2\pi}} \text{ satisfies } A \,\Phi_{\xi} = \lambda_{\xi} \,\Phi_{\xi}.$$

• \mathcal{F}^{-1} is the operator of re-composition on this family:

$$\mathcal{F}^{-1}\widehat{\varphi}(x) = \int_{\mathbb{R}} \widehat{\varphi}(\xi) \Phi_{\xi}(x) \,\mathrm{d}\xi.$$

Christophe Hazard (POEMS)

Generalized \mathcal{F} ourier representation in a half-guide

Suppose $u \in L^2$ satisfies $\Delta u + n^2(x)\omega^2 u = 0$ in $\{y > 0\}$.

Write

$$-\Delta u - n^2 \omega^2 u = \underbrace{\left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} - n^2 \omega^2\right)}_{\widetilde{A}} u - \frac{\mathrm{d}^2 u}{\mathrm{d}y^2} \quad \text{and} \quad \underbrace{\text{diagonalize } \widetilde{A} ?}_{\widetilde{A}}$$

 \implies The generalized Fourier transform $\widetilde{\mathcal{F}}$ diagonalizes the operator \widetilde{A} in the sense that

$$\widetilde{\mathcal{F}}\widetilde{A}\,\varphi(\xi) = \lambda_{\xi}\,\,\widetilde{\mathcal{F}}\,\varphi(\xi) \quad \text{where} \quad \lambda_{\xi} = \xi^{2} - \omega^{2}.$$

Generalized \mathcal{F} ourier representation in a half-guide

- $\widetilde{A} = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} n^2 \omega^2$ is selfadjoint in $L^2(\mathbb{R})$. Its spectrum is composed of
 - a continuous spectrum $\Lambda_{c} = [-\omega^{2}, +\infty[$ (same as A),
 - a finite point spectrum $\Lambda_{\mathbf{p}} \subset] \infty, -\omega^2 [$ (nonempty iff sup n(x) > 1).

Construction of a complete spectral family $\left\{ \widetilde{\Phi}_{\xi}; \xi \in \mathbb{R} \cup \mathbb{G} \right\}$:

• Generalized eigenfunctions for $\xi \in \mathbb{R}$ (i.e., $\lambda_{\xi} = \xi^2 - \omega^2 \in \Lambda_c$):

$$\underbrace{\widetilde{\Phi}_{\boldsymbol{\xi}} = \Phi_{\boldsymbol{\xi}} + \Phi^{\mathrm{scat}}_{\boldsymbol{\xi}} \notin L^2(\mathbb{R})}_{\text{radiation modes}} \quad \text{where } \left\{ \begin{array}{l} \widetilde{A} \, \widetilde{\Phi}_{\boldsymbol{\xi}} = \lambda_{\boldsymbol{\xi}} \, \widetilde{\Phi}_{\boldsymbol{\xi}} \\ \Phi^{\mathrm{scat}}_{\boldsymbol{\xi}}(x) = \alpha^{\pm}_{\boldsymbol{\xi}} \, \mathrm{e}^{\mathrm{i}|\boldsymbol{\xi}||x|} \, \operatorname{if} \, x \to \pm \infty. \end{array} \right.$$

• Eigenfunctions for $\xi \in \mathbb{G}$ = finite subset of \mathbb{R}^+ (i.e., for each $\lambda_{\xi} \in \Lambda_p$):

$$\underbrace{\widetilde{\Phi}_{\boldsymbol{\xi}} \in L^2(\mathbb{R})}_{\text{guided modes}} \quad \text{where } \begin{cases} \widetilde{A} \, \widetilde{\Phi}_{\boldsymbol{\xi}} = \lambda_{\boldsymbol{\xi}} \, \widetilde{\Phi}_{\boldsymbol{\xi}} \\ \| \widetilde{\Phi}_{\boldsymbol{\xi}} \|_{L^2(\mathbb{R})} = 1. \end{cases}$$

Christophe Hazard (POEMS)

30 /

《曰》 《圖》 《문》 《문》

Generalized $\tilde{\mathcal{F}}$ ourier representation in a half-guide

Spectral theory yields

• The operator of decomposition on the family $\{\widetilde{\Phi}_{\xi}; \xi \in \mathbb{R} \cup \mathbb{G}\}$:

$$\widetilde{\mathcal{F}}\varphi(\boldsymbol{\xi}) := \int_{\mathbb{R}} \varphi(x) \, \widetilde{\Phi}_{\boldsymbol{\xi}}(x) \, \mathrm{d}x \quad \forall \boldsymbol{\xi} \in \mathbb{R} \cup \mathbb{G},$$

extends to a unitary transformation from $L^2(\mathbb{R}_x)$ to $L^2(\mathbb{R}_{\xi}) \oplus \ell^2(\mathbb{G})$. • $\widetilde{\mathcal{F}}^{-1} = \mathcal{F}^*$ is the operator of re-composition on the family $\{\widetilde{\Phi}_{\xi}\}$:

$$\widetilde{\mathcal{F}}^{-1}\widehat{\varphi} = \int_{\mathbb{R}} \widehat{\varphi}(\xi) \, \widetilde{\Phi}_{\xi} \, \mathrm{d}\xi + \sum_{\xi \in \mathbb{G}} \widehat{\varphi}(\xi) \, \widetilde{\Phi}_{\xi}.$$

• $\widetilde{\mathcal{F}}$ diagonalizes \widetilde{A} in the sense that $\widetilde{A} = \widetilde{\mathcal{F}}^{-1} \lambda_{\xi} \widetilde{\mathcal{F}}$.

Moreover

For all $x \in \mathbb{R}$, function $\xi \mapsto \widetilde{\Phi}_{\xi}(x)$ extends to a meromorphic function of $\xi \in \mathbb{C}$.

Generalized $\tilde{\mathcal{F}}$ ourier representation in a half-guide

If $u \in L^2$ satisfies $\Delta u + n^2(x)\omega^2 u = 0$ in $\{y > 0\}$, then

$$u(x,y) = \int_{|\xi| > \omega} \widetilde{\mathcal{F}}u(\xi,0) e^{-\sqrt{\xi^2 - \omega^2} y} \widetilde{\Phi}_{\xi} d\xi$$

and $\widetilde{\mathcal{F}}u(\xi,0) = 0$ if $\xi \in]-\omega, +\omega[\cup \mathbb{G}.$

/ 36

イロト イポト イヨト イヨト

Proof of the absence of trapped modes

The generalized $\widetilde{\mathcal{F}}$ ourier representation tells us that

$$\widehat{u}(\boldsymbol{\xi}) := \int_{\mathbb{R}} u(x,0) \, \widetilde{\Phi}_{\boldsymbol{\xi}}(x) \, \mathrm{d}x \quad ext{vanishes if } \boldsymbol{\xi} \in \left] - \omega, + \omega \right[$$

It remains to prove that $\xi \mapsto \hat{u}(\xi)$ is analytic in a vicinity of the real axis. The idea:

$$\widehat{u}(\xi) = \int_{-\infty}^{a} \underline{u(x,0)} \,\widetilde{\Phi}_{\xi}(x) \,\mathrm{d}x + \int_{a}^{b} u(x,0) \,\widetilde{\Phi}_{\xi}(x) \,\mathrm{d}x + \int_{b}^{+\infty} \underline{u(x,0)} \,\widetilde{\Phi}_{\xi}(x) \,\mathrm{d}x$$

Christophe Hazard (POEMS)

Proof of the absence of trapped modes

• $\int_{a}^{b} u(x,0) \,\widetilde{\Phi}_{\xi}(x) \,\mathrm{d}x$ is analytic near \mathbb{R} since $\begin{cases} \xi \mapsto \widetilde{\Phi}_{\xi}(x) \text{ meromorphic,} \\ [a,b] \text{ bounded.} \end{cases}$

• $\int_{b}^{+\infty} u(x,0) \widetilde{\Phi}_{\xi}(x) dx \implies$ use the GFR in the right (R) half-guide:

$$u(x,0) = \int_{|\eta| > \omega} \widehat{\varphi}^{(R)}(\eta) e^{-\sqrt{\eta^2 - \omega^2} x \sin \theta} \widetilde{\Phi}^{(R)}_{\eta}(x \cos \theta) d\eta$$

and proceed as in §2. Recall that $\widetilde{\Phi}_{\xi}(x) = \frac{\mathrm{e}^{\mathrm{i}\xi x}}{\sqrt{2\pi}} + \alpha_{\xi}^{\pm} \mathrm{e}^{\mathrm{i}|\xi||x|}$ if $x \to \pm \infty$.

Christophe Hazard (POEMS)

Conclusion: open questions

• 2D multiple junctions with angle $< \pi/2$:

- 3D multiple junctions
- scattering by junctions
- periodic waveguides

...

イロト イポト イヨト イヨト

THANK YOU

for your attention

Christophe Hazard (POEMS) Trapped modes in open waveguides Porquerolles – May

36 / 36