Spectral asymptotics for an elastic strip with an interior crack

André Hänel (joint work with T. Weidl)

Institut für Analysis Leibniz Universität Hannover

May 18, 2016

Introduction

General Subject:

• Elastic media with a (small) perturbation.

Subject of the present talk:

- Existence of trapped modes
- ≅ harmonic oscillation near the perturbation
- \cong (embedded) eigenvalues of a suitable differential operator.

Applications:

 Non-destructive testing theory (wings of airplanes or sensitive structures).

Let $\Omega:=\mathbb{R}\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and denote by $\Sigma_{\ell}=\left(-\ell,\ell\right)$ the crack. Let $\Omega_{\ell}:=\Omega\setminus\left(\overline{\Sigma_{\ell}}\times\{0\}\right)$. We consider the elasticity operator in $L_{2}\left(\Omega;\mathbb{C}^{2}\right)$ and traction free boundary conditions on $\partial\Omega_{\ell}$.

The operator acts as

$$A_{\Sigma_{\ell}} = -\mu \Delta - (\lambda + \mu) \operatorname{grad} \operatorname{div}$$

on functions $u \in H^1(\Omega_\ell; \mathbb{C}^2)$ such that

$$(\lambda \operatorname{div} u + 2\mu E(u)) \cdot \mathbf{n} = 0 \text{ on } \partial \Omega_{\ell}.$$

- Existence of (embedded) eigenvalues?
- Asymptotic behaviour as $\ell \to 0$?

Let $\Omega:=\mathbb{R}\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and denote by $\Sigma_{\ell}=\left(-\ell,\ell\right)$ the crack. Let $\Omega_{\ell}:=\Omega\setminus\left(\overline{\Sigma_{\ell}}\times\{0\}\right)$. We consider the elasticity operator in $L_{2}\left(\Omega;\mathbb{C}^{2}\right)$ and traction free boundary conditions on $\partial\Omega_{\ell}$.

The operator acts as

$$A_{\Sigma_{\ell}} = -\mu \Delta - (\lambda + \mu) \operatorname{grad} \operatorname{div}$$

on functions $u \in H^1(\Omega_\ell; \mathbb{C}^2)$ such that

$$(\lambda \operatorname{div} u + 2\mu E(u)) \cdot \mathbf{n} = 0 \text{ on } \partial \Omega_{\ell}.$$

- Existence of (embedded) eigenvalues? → [H., Schulz, Wirth].
- Asymptotic behaviour as $\ell \to 0$? \to partially answered in [HSW].

Let $\Omega:=\mathbb{R}\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and denote by $\Sigma_{\ell}=\left(-\ell,\ell\right)$ the crack. Let $\Omega_{\ell}:=\Omega\setminus\left(\overline{\Sigma_{\ell}}\times\{0\}\right)$. We consider the elasticity operator in $L_{2}\left(\Omega;\mathbb{C}^{2}\right)$ and traction free boundary conditions on $\partial\Omega_{\ell}$.

The operator acts as

$$A_{\Sigma_{\ell}} = -\mu \Delta - (\lambda + \mu) \operatorname{grad} \operatorname{div}$$

on functions $u \in H^1(\Omega_\ell; \mathbb{C}^2)$ such that

$$(\lambda \operatorname{div} u + 2\mu E(u)) \cdot \mathbf{n} = 0 \text{ on } \partial \Omega_{\ell}.$$

- Existence of (embedded) eigenvalues? → [H., Schulz, Wirth].
- Asymptotic behaviour as $\ell \to 0$? \to partially answered in [HSW].

Let $\Omega:=\mathbb{R}\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and denote by $\Sigma_{\ell}=\left(-\ell,\ell\right)$ the crack. Let $\Omega_{\ell}:=\Omega\setminus\left(\overline{\Sigma_{\ell}}\times\{0\}\right)$. We consider the elasticity operator in $L_{2}\left(\Omega;\mathbb{C}^{2}\right)$ and traction free boundary conditions on $\partial\Omega_{\ell}$.

 $\underset{\Sigma_{\ell}}{\longmapsto}$

The operator acts as

$$A_{\Sigma_{\ell}} = -\mu \Delta - (\lambda + \mu) \operatorname{grad} \operatorname{div}$$

on functions $u \in H^1(\Omega_\ell; \mathbb{C}^2)$ such that

$$(\lambda \operatorname{div} u + 2\mu E(u)) \cdot \mathbf{n} = 0 \text{ on } \partial \Omega_{\ell}.$$

- Existence of (embedded) eigenvalues? → [H., Schulz, Wirth].
- Asymptotic behaviour as $\ell \to 0$? \to partially answered in [HSW].

Let $\Omega:=\mathbb{R}\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and denote by $\Sigma_{\ell}=\left(-\ell,\ell\right)$ the crack. Let $\Omega_{\ell}:=\Omega\setminus\left(\overline{\Sigma_{\ell}}\times\{0\}\right)$. We consider the elasticity operator in $L_{2}\left(\Omega;\mathbb{C}^{2}\right)$ and traction free boundary conditions on $\partial\Omega_{\ell}$.

The operator acts as

$$A_{\varnothing} = -\mu\Delta - (\lambda + \mu)$$
 grad div

on functions $u \in H^1(\Omega; \mathbb{C}^2)$ such that

$$(\lambda \operatorname{div} u + 2\mu E(u)) \cdot \mathbf{n} = 0 \text{ on } \partial\Omega.$$

- Existence of (embedded) eigenvalues? → [H., Schulz, Wirth].
- Asymptotic behaviour as $\ell \to 0$? \to partially answered in [HSW].

Main result

Theorem

Let $\mu=1$, $\lambda=0$. For small $\ell>0$ the operator A_{Σ_ℓ} has (at least) 2 eigenvalues, which satisfy

$$\begin{split} & \Lambda - \lambda_1(\ell) = \ell^4 \cdot v_1 + \mathcal{O}(\ell^5) \qquad \text{as} \quad \ell \to 0, \\ & \Lambda - \lambda_2(\ell) = \ell^8 \cdot v_2 + \mathcal{O}(\ell^9) \qquad \text{as} \quad \ell \to 0, \end{split}$$

with $v_1, v_2 > 0$.

Principal characteristics of the problem:

- Non-additivity of the perturbation.
- Matrix structure of the differential operator.
- Empty discrete spectrum; indeed, $\sigma(A_{\Sigma_{\ell}}) = \sigma_{\rm ess}(A_{\Sigma_{\ell}}) = [0, \infty)$.

Ansatz:

 Use the Dirichlet-to-Neumann mapping to transform the original problem into an boundary integral problem.

Internal symmetries

Reflection in the horizontal axis leads to a decomposition

$$L_2\big(\Omega;\mathbb{C}^2\big)=H^s\oplus H^{as}\quad\text{and}\quad A_{\Sigma_\ell}=A^s_{\Sigma_\ell}\oplus A^{as}_{\Sigma_\ell}.$$

Symmetric waves

$$u_1(x_1, x_2) = u_1(x_1, -x_2)$$

 $u_2(x_1, x_2) = -u_2(x_1, -x_2).$

Antisymmetric waves

$$u_1(x_1, x_2) = -u_1(x_1, -x_2)$$

 $u_2(x_1, x_2) = u_2(x_1, -x_2).$

Internal symmetries

Reflection in the horizontal axis leads to a decomposition

$$L_2\big(\Omega;\mathbb{C}^2\big)=H^s\oplus H^{as}\quad\text{and}\quad A_{\Sigma_\ell}=A^s_{\Sigma_\ell}\oplus A^{as}_{\Sigma_\ell}.$$

$$u_1(x_1, x_2) = u_1(x_1, -x_2)$$

 $u_2(x_1, x_2) = -u_2(x_1, -x_2).$

Antisymmetric waves

$$u_1(x_1, x_2) = -u_1(x_1, -x_2)$$

 $u_2(x_1, x_2) = u_2(x_1, -x_2).$

Reduction to a mixed problem

Considering only symmetric waves we obtain a problem on the upper half-strip $\Omega_+ := \mathbb{R} \times (0, \frac{\pi}{2})$. We search for $\lambda(\ell) \ge 0$ and $u \in H^1(\Omega_+; \mathbb{C}^2)$ such that

$$(-\Delta - \text{grad div})u = \lambda(\ell)u$$
 in Ω_+

with boundary conditions

$$\begin{cases} (\partial_1 u_2 + \partial_2 u_1) (x_1, \frac{\pi}{2}) &= 0 & \text{for } x_1 \in \mathbb{R}, \\ 2\partial_2 u_2 (x_1, \frac{\pi}{2}) &= 0 & \text{for } x_1 \in \mathbb{R}, \end{cases}$$

$$\begin{cases} -(\partial_1 u_2 + \partial_2 u_1) (x_1, 0) &= 0 & \text{for } x \in \mathbb{R}, \\ -2\partial_2 u_2 (x_1, 0) &= 0 & \text{for } x_1 \in \Sigma_{\ell} = (-\ell, \ell), \\ u_2 (x_1, 0) &= 0 & \text{for } x_1 \notin \Sigma_{\ell}. \end{cases}$$

Reduction to a mixed problem

Considering only symmetric waves we obtain a problem on the upper half-strip $\Omega_+ := \mathbb{R} \times \left(0, \frac{\pi}{2}\right)$. We search for $\lambda(\ell) \ge 0$ and $u \in H^1(\Omega_+; \mathbb{C}^2)$ such that

$$(-\Delta - \operatorname{grad} \operatorname{div})u = \lambda(\ell) \omega u$$
 in Ω_+

with boundary conditions

$$\begin{cases} \left(\partial_1 u_2 + \partial_2 u_1\right)\left(x_1, \frac{\pi}{2}\right) &= 0 & \text{for } x_1 \in \mathbb{R}, \\ 2\partial_2 u_2\left(x_1, \frac{\pi}{2}\right) &= 0 & \text{for } x_1 \in \mathbb{R}, \end{cases}$$

$$\begin{cases} -\left(\partial_1 u_2 + \partial_2 u_1\right)\left(x_1, 0\right) &= 0 & \text{for } x \in \mathbb{R}, \\ u_2 &= 2\partial_2 u_2\left(x_1, 0\right) &= \emptyset & \text{for } x_1 \in \mathbb{R}. \end{cases}$$

$$\underbrace{u_2\left(x_1, 0\right)}_{=\mathcal{Q}\left(x_1, 0\right)} &= \emptyset & \text{for } \underbrace{x_1 \notin \mathcal{Z}_{\ell}}_{=\mathcal{Q}}. \end{cases}$$

- \bullet Provide the boundary data g and calculate u.
- If $2\partial_2 u_2(x_1,0) = 0$, $x_1 \in \Sigma_\ell$, then $\omega = \lambda(\ell)$.

The solution of the Poisson problem

Let $\omega \in \mathbb{C} \setminus \{0\}$. Applying the Fourier transform into the horizontal direction we obtain

$$\begin{pmatrix} 2\xi^2 - \partial_2^2 & -i\xi\partial_2 \\ -i\xi\partial_2 & \xi^2 - 2\partial_2^2 \end{pmatrix} \widehat{u}(\xi, x_2) = \omega \widehat{u}(\xi, x_2) + (b.c.).$$

We have $\widehat{u}(\xi, x_2) = \sum_{i=1}^4 a_i(\xi, \omega) v_i(x_2)$, where

$$v_{1,2}(x_2) := \begin{pmatrix} \pm \beta \\ -\xi \end{pmatrix} e^{\pm i\beta x_2}; \qquad v_{3,4}(x_2) := \begin{pmatrix} \xi \\ \pm \gamma \end{pmatrix} e^{\pm i\gamma x_2};$$

with $\beta=\sqrt{\omega-\xi^2}$ and $\gamma=\sqrt{\frac{\omega}{2}-\xi^2}$. Inserting the boundary conditions leads to a linear system

$$L(\xi,\omega)a(\xi,\omega) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \widehat{g}(\xi) \end{pmatrix}, \qquad L(\xi,\omega) \in \mathbb{R}^{4\times 4}.$$

The Poisson and the Dirichlet-to-Neumann operator

We have

$$\det(L(\xi,\omega)) = 32\gamma^2(\gamma^2 + \xi^2) \left[\sin\left(\beta\frac{\pi}{2}\right) \cos\gamma^3 + \cos\left(\beta\frac{\pi}{2}\right) \sin\left(\gamma\frac{\pi}{2}\right) \beta\xi^2 \right].$$

Reminder: The Rayleigh-Lamb equation describes the spectrum of the unperturbed operator A_{\varnothing} .

We define for $\omega \notin [0,\infty) = \sigma(A_{\varnothing}+) = \sigma_{\mathrm{ess}}(A_{\Sigma_{\ell}+})$:

- Poisson operator $K_{\omega}: H^{1/2}(\mathbb{R}) \to H^1(\Omega_+; \mathbb{C}^2), K_{\omega}g := u.$
- D-to-N operator $D_{\omega}: H^{1/2}(\mathbb{R}) \to H^{-1/2}(\mathbb{R}), \ D_{\omega}g:=-2\partial_2 u_2|_{\mathbb{R}\times\{0\}}.$

We have $\widehat{D_{\omega}g}(\xi) = m_{\omega}(\xi)\widehat{g}(\xi)$ for some function m_{ω} :

The Poisson and the Dirichlet-to-Neumann operator

We have

$$\det(L(\xi,\omega)) = 32\gamma^2(\gamma^2 + \xi^2) \left[\sin\left(\beta\frac{\pi}{2}\right) \cos\gamma^3 + \cos\left(\beta\frac{\pi}{2}\right) \sin\left(\gamma\frac{\pi}{2}\right) \beta\xi^2 \right].$$

Reminder: The Rayleigh-Lamb equation describes the spectrum of the unperturbed operator A_{\varnothing} .

We define for $\omega \notin [0,\infty) = \sigma(A_{\varnothing}+) = \sigma_{\mathrm{ess}}(A_{\Sigma_{\ell}+})$:

- Poisson operator $K_{\omega}: H^{1/2}(\mathbb{R}) \to H^1(\Omega_+; \mathbb{C}^2), \ K_{\omega}g := u.$
- D-to-N operator $D_{\omega}: H^{1/2}(\mathbb{R}) \to H^{-1/2}(\mathbb{R}), \ D_{\omega}g:=-2\partial_2 u_2|_{\mathbb{R}\times\{0\}}.$

We have $\widehat{D_{\omega}g}(\xi) = m_{\omega}(\xi)\widehat{g}(\xi)$ for some function m_{ω} :

$$\frac{-2\sin\left(\frac{\beta\pi}{2}\right)\sin\left(\frac{\gamma\pi}{2}\right)\left[\gamma^6+2\gamma^2\xi^4+\xi^6\right]+4\left[\cos\left(\frac{\beta\pi}{2}\right)\cos\left(\frac{\gamma\pi}{2}\right)-1\right]\beta\gamma^3\xi^2}{\left(\gamma^2+\xi^2\right)\left[\sin\left(\frac{\beta\pi}{2}\right)\cos\left(\frac{\gamma\pi}{2}\right)\gamma^3+\cos\left(\frac{\beta\pi}{2}\right)\sin\left(\frac{\gamma\pi}{2}\right)\beta\xi^2\right]}$$

The truncated Dirichlet-to-Neumann operator

For $\omega \notin [0,\infty)$ the truncated Dirichlet-to-Neumann operator is given by

$$D_{\ell,\omega}: \operatorname{dom}(D_{\ell,\omega}) \to \operatorname{ran}(D_{\ell,\omega}), \qquad D_{\ell,\omega}:= r_{\ell} D_{\omega} e_{\ell},$$

- $e_{\ell} \cong$ extension by 0;
- $r_{\ell} \cong$ restriction to the interval $(-\ell, \ell)$;
- $dom(D_{\ell,\omega}), ran(D_{\ell,\omega})$ are suitable function spaces on $(-\ell,\ell)$.

The truncated Dirichlet-to-Neumann operator

For $\omega \notin [0,\infty)$ the truncated Dirichlet-to-Neumann operator is given by

$$\boxed{D_{\ell,\omega}: H_{[-\ell,\ell]}^{1/2} \to H^{-1/2}(-\ell,\ell), \qquad D_{\ell,\omega}:= r_{\ell} D_{\omega} e_{\ell},}$$

where

- $e_{\ell} \cong \text{extension by 0}$;
- $r_{\ell} \cong$ restriction to the interval $(-\ell, \ell)$;

$$H_{[-\ell,\ell]}^{1/2} := \left\{ g \in L_2(-\ell,\ell) : e_{\ell}g \in H^{1/2}(\mathbb{R}) \right\},$$

$$H^{-1/2}(-\ell,\ell) := \left\{ h \in \mathcal{D}'(-\ell,\ell) : \exists \widetilde{h} \in H^{-1/2}(\mathbb{R}) \text{ s.t. } h = r_{\ell}\widetilde{h} \right\}.$$

Lemma

$$\omega \in \sigma_d(A_{\Sigma_{\ell+}}) \iff \ker D_{\ell,\omega} \neq \{0\}.$$

Idea: Let $\ell \to 0$ and find $\omega = f(\ell)$ such that $\ker D_{\ell,\omega(\ell)} \neq \{0\}$.

Analysis of the Dirichlet-to-Neumann operator

- \wedge We have $\sigma(A_{\Sigma_{\ell}^+}) = [0, \infty), \ \sigma_d(A_{\Sigma_{\ell}^+}) = \emptyset.$
 - Use the symmetry decomposition $L_2(\Omega_+; \mathbb{C}^2) = H_{1+} \oplus H_{2+}$ with $H_{1+} = \{(u_1(x_1), 0)^T\}$. Then

$$A_{\Sigma+} := A_{\Sigma_{\ell}}^{(1)} \oplus A_{\Sigma_{\ell}}^{(2)}, \qquad \sigma_{\mathrm{ess}}(A_{\Sigma_{\ell}}^{(2)}) = [\Lambda, \infty)$$

with $\Lambda > 0$. Moreover,

$$K_{\omega}: H^{1/2}(\mathbb{R}) \to H^1(\Omega_+; \mathbb{C}^2) \cap H_{2+}, \qquad D_{\omega}: H^{1/2}(\mathbb{R}) \to H^{-1/2}(\mathbb{R})$$
 are well-defined for $[\Lambda, \infty)$.

- - Let $T_{\ell}: L_2(-1,1) \to L_2(-\ell,\ell)$, $(T_{\ell}g)(x) = \ell^{-1/2}g(x/\ell)$ and define

$$Q(\ell,\omega): H_{[-1,1]}^{1/2} \to H^{-1/2}(-1,1), \qquad Q(\ell,\omega):= T_{\ell}^* D_{\ell,\omega} T_{\ell}.$$

Analysis of the Dirichlet-to-Neumann operator

- $\underline{\wedge}$ We have $\sigma(A_{\Sigma_{\ell}^+}) = [0, \infty)$, $\sigma_d(A_{\Sigma_{\ell}^+}) = \varnothing$.
 - Use the symmetry decomposition $L_2(\Omega_+; \mathbb{C}^2) = H_{1+} \oplus H_{2+}$ with $H_{1+} = \{(u_1(x_1), 0)^T\}$. Then

$$A_{\Sigma+} := A_{\Sigma_{\ell}}^{(1)} \oplus A_{\Sigma_{\ell}}^{(2)}, \qquad \sigma_{\mathrm{ess}}(A_{\Sigma_{\ell}}^{(2)}) = [\Lambda, \infty)$$

with $\Lambda > 0$. Moreover,

$$K_{\omega}: H^{1/2}(\mathbb{R}) \to H^1(\Omega_+; \mathbb{C}^2) \cap H_{2+}, \qquad D_{\omega}: H^{1/2}(\mathbb{R}) \to H^{-1/2}(\mathbb{R})$$
 are well-defined for $[\Lambda, \infty)$.

- - Let $T_{\ell}: L_2(-1,1) \to L_2(-\ell,\ell)$, $(T_{\ell}g)(x) = \ell^{-1/2}g(x/\ell)$ and define

$$Q(\ell,\omega): H_{[-1,1]}^{1/2} \to H^{-1/2}(-1,1), \qquad Q(\ell,\omega):= T_{\ell}^* D_{\ell,\omega} T_{\ell}.$$

- \bigwedge How to describe the D-to-N operator as $\ell \to 0$ and $\omega \to \Lambda$?
 - Use the perturbation formula

$$D_{\omega} = D_0 - \omega K_0^* (I + \omega (A_{\varnothing +}^{(2)} - \omega)^{-1}) K_0$$

From $m_0(\xi) = |\xi| + O(1)$ we obtain

$$\begin{split} \langle Q(\ell,0)g,h\rangle &= \int_{\mathbb{R}} m_0(\xi/\ell)\widehat{g}(\xi)\,\overline{\widehat{h}(\xi)}\,\mathrm{d}\xi \\ &= \frac{1}{\ell} \int_{\mathbb{R}} |\xi| \cdot \widehat{g}(\xi)\,\overline{\widehat{h}(\xi)}\,\mathrm{d}\xi + \mathcal{O}(1) = \frac{1}{\ell} \langle Q_0g,h\rangle + \mathcal{O}(1), \end{split}$$

$$\langle Q_0 g, h \rangle := \int_{\mathbb{R}} |\xi| \cdot \widehat{g}(\xi) \, \overline{\widehat{h}(\xi)} \, d\xi.$$

- \bigwedge How to describe the D-to-N operator as $\ell \to 0$ and $\omega \to \Lambda$?
 - Use the perturbation formula

$$D_{\ell,\omega} = D_{\ell,0} - \omega r_{\ell} K_0^* (I + \omega (A_{\varnothing+}^{(2)} - \omega)^{-1}) K_0 e_{\ell}.$$

From $m_0(\xi) = |\xi| + O(1)$ we obtain

$$\begin{split} \langle Q(\ell,0)g,h\rangle &= \int_{\mathbb{R}} m_0(\xi/\ell)\widehat{g}(\xi)\,\overline{\widehat{h}(\xi)}\,\mathrm{d}\xi \\ &= \frac{1}{\ell} \int_{\mathbb{R}} |\xi| \cdot \widehat{g}(\xi)\,\overline{\widehat{h}(\xi)}\,\mathrm{d}\xi + \mathcal{O}(1) = \frac{1}{\ell} \langle Q_0g,h\rangle + \mathcal{O}(1), \end{split}$$

$$\langle Q_0 g, h \rangle := \int_{\mathbb{R}} |\xi| \cdot \widehat{g}(\xi) \, \overline{\widehat{h}(\xi)} \, d\xi.$$

- \bigwedge How to describe the D-to-N operator as $\ell \to 0$ and $\omega \to \Lambda$?
 - Use the perturbation formula

$$Q(\ell,\omega) = Q(\ell,0) - \omega T_{\ell}^* r_{\ell} K_0^* (I + \omega (A_{\varnothing +}^{(2)} - \omega)^{-1}) K_0 e_{\ell} T_{\ell}.$$

From $m_0(\xi) = |\xi| + O(1)$ we obtain

$$\begin{split} \langle Q(\ell,0)g,h\rangle &= \int_{\mathbb{R}} m_0(\xi/\ell)\widehat{g}(\xi)\,\overline{\widehat{h}(\xi)}\,\mathrm{d}\xi \\ &= \frac{1}{\ell} \int_{\mathbb{R}} |\xi| \cdot \widehat{g}(\xi)\,\overline{\widehat{h}(\xi)}\,\mathrm{d}\xi + \mathcal{O}(1) = \frac{1}{\ell} \langle Q_0g,h\rangle + \mathcal{O}(1), \end{split}$$

$$\langle Q_0 g, h \rangle := \int_{\mathbb{R}} |\xi| \cdot \widehat{g}(\xi) \, \overline{\widehat{h}(\xi)} \, \mathrm{d} \xi.$$

- \bigwedge How to describe the D-to-N operator as $\ell \to 0$ and $\omega \to \Lambda$?
 - Use the perturbation formula

$$Q(\ell,\omega) = Q(\ell,0) - \omega T_{\ell}^* r_{\ell} K_0^* (I + \omega (A_{\varnothing}^{(2)} - \omega)^{-1}) K_0 e_{\ell} T_{\ell}.$$

From $m_0(\xi) = |\xi| + O(1)$ we obtain

$$\begin{split} \langle Q(\ell,0)g,h\rangle &= \int_{\mathbb{R}} m_0(\xi/\ell)\widehat{g}(\xi)\,\overline{\widehat{h}(\xi)}\,\mathrm{d}\xi \\ &= \frac{1}{\ell} \int_{\mathbb{R}} |\xi| \cdot \widehat{g}(\xi)\,\overline{\widehat{h}(\xi)}\,\mathrm{d}\xi + \mathcal{O}(1) = \frac{1}{\ell} \langle Q_0g,h\rangle + \mathcal{O}(1), \end{split}$$

$$\langle Q_0 g, h \rangle := \int_{\mathbb{R}} |\xi| \cdot \widehat{g}(\xi) \, \overline{\widehat{h}(\xi)} \, d\xi.$$

The unperturbed operator

Applying the Fourier transform in the horizontal direction one obtains a family of self-adjoint operators $(A_{\varnothing+})_{\xi\in\mathbb{R}}$, where

$$A_{\varnothing+}(\xi) := \begin{pmatrix} 2\xi^2 - \partial_2^2 & -i\xi\partial_2 \\ -i\xi\partial_2 & \xi^2 - 2\partial_2^2 \end{pmatrix},$$

$$D(A_{\varnothing+}(\xi)) := \{ u \in H^2(I_+; \mathbb{C}^2) : \ \partial_2 u_2(\pm \pi/2) = 0 \land \\ \partial_2 u_1(\pm \pi/2) + i\xi u_2(\pm \pi/2) = 0 \}.$$

Then:

• $\omega \in \sigma(A_{\varnothing+}(\xi))$ if and only if

$$\sin \left(\beta \frac{\pi}{2}\right) \cos \left(\gamma \frac{\pi}{2}\right) \gamma^3 + \cos \left(\beta \frac{\pi}{2}\right) \sin \left(\gamma \frac{\pi}{2}\right) \beta \xi^2 = 0.$$

- If $\psi_{\xi}(x_2)$ is an eigenfunction of $A_{\varnothing+}(\xi)$ then $\psi_{\xi}(x_2) \cdot e^{i\xi x_1}$ is a generalised eigenfunction of $A_{\varnothing+}$.
- $\sigma(A_{\varnothing}+) = \cup_{\xi \in \mathbb{R}} \sigma(A_{\varnothing}+(\xi)) = [0,\infty).$

The unperturbed operator

Applying the Fourier transform in the horizontal direction one obtains a family of self-adjoint operators $(A_{\varnothing+}^{(2)})_{\xi\in\mathbb{R}}$, where

$$A_{\varnothing+}^{(2)}(\xi) := \begin{pmatrix} 2\xi^2 - \partial_2^2 & -i\xi\partial_2 \\ -i\xi\partial_2 & \xi^2 - 2\partial_2^2 \end{pmatrix},$$

$$D(A_{\varnothing+}^{(2)}(\xi)) := \{ u \in H^2(I_+; \mathbb{C}^2) : \ \partial_2 u_2(\pm \pi/2) = 0 \land u \perp 1 \land \\ \partial_2 u_1(\pm \pi/2) + i\xi u_2(\pm \pi/2) = 0 \}.$$

Then:

• $\omega \in \sigma(A_{\varnothing+}^{(2)}(\xi))$ if and only if $\omega \neq 2\xi^2$ and $\sin\left(\beta\frac{\pi}{2}\right)\cos\left(\gamma\frac{\pi}{2}\right)\gamma^3 + \cos\left(\beta\frac{\pi}{2}\right)\sin\left(\gamma\frac{\pi}{2}\right)\beta\xi^2 = 0.$

- If $\psi_{\xi}(x_2)$ is an eigenfunction of $A_{\varnothing+}^{(2)}(\xi)$ then $\psi_{\xi}(x_2) \cdot e^{i\xi x_1}$ is a generalised eigenfunction of $A_{\varnothing+}^{(2)}$.
- $\sigma(A_{\varnothing+}^{(2)}) = \bigcup_{\xi \in \mathbb{R}} \sigma(A_{\varnothing+}^{(2)}(\xi)) = [\Lambda, \infty)$:

The dispersion curves of $A_{\varnothing+}$

- ullet x-axis: parameter ξ .
- y-axis: eigenvalues of $A_{\varnothing+}(\xi)$.

The dispersion curves of $A_{\varnothing+}^{(2)}$

- ullet x-axis: parameter ξ .
- y-axis: eigenvalues of $A^{(2)}_{\varnothing+}(\xi)$.

Let $\zeta_1(\xi)$ be the lowest eigenvalue branch of $A^{(2)}_{\varnothing+}$. Then

$$\Lambda = \min\{\zeta_1(\xi): \xi \in \mathbb{R}\} = \inf\sigma(A_{\varnothing+}^{(2)}) = \inf\sigma_{ess}(A_{\Sigma_{\ell}+}^{(2)}).$$

We have $\zeta_1(\pm \kappa) = \Lambda$,

$$\kappa = 0.632138 \pm 10^{-6}$$

and

$$\Lambda = 1.887837 \pm 10^{-6}.$$

Estimate of the resolvent term

Lemma

We have

$$\omega T_{\ell}^* r_{\ell} K_0^* (I + \omega (A_{\varnothing+}^{(2)} - \omega)^{-1}) K_0 r_{\ell} T_{\ell}$$

$$= \frac{8 \cdot |\partial_2 \psi_{\kappa,2}(0)|^2}{\sqrt{\Lambda - \omega} \cdot \sqrt{2 \zeta_1''(\kappa)}} T_{\ell}^* (P_+ + P_-) T_{\ell} + \mathcal{O}(1).$$

The remainder may be estimated uniformly in the operator norm of $L_2(-1,1)$.

Here

- P_{\pm} is the projection in $L_2(-1,1)$ onto the subspace spanned by $\Phi_{\pm}(x_1):=\mathrm{e}^{\pm\mathrm{i}\kappa x_1}$
- $\psi_{\pm\kappa} \in L_2(I_+; \mathbb{C}^2)$ is chosen such that

$$A_{\varnothing+}^{(2)}(\pm\kappa)\psi_{\pm\kappa} = \Lambda\psi_{\pm\kappa} \qquad \text{and} \qquad \|\psi_{\pm\kappa}\|_{L_2(I_+;\mathbb{C}^2)} = 1, \quad (1)$$

Idea of the proof

We use a resolvent expansion of $A^{(2)}_{\varnothing+}$ near the bottom of the essential spectrum. For $f,g\in L_2(\Sigma_\ell)$ we have

$$\langle K_0^* (A_{\varnothing+}^{(2)} - \omega)^{-1} K_0 f, g \rangle = \int_{\mathbb{R}} \langle K_0(\xi) (A_{\varnothing+}^{(2)}(\xi) - \omega)^{-1} \widehat{g}(\xi), K_0(\xi) \widehat{h}(\xi) \rangle d\xi$$

where $K_0(\cdot)$ is the paremeter-dependent Poisson operator. From the spectral theorem we obtain

$$(A_{\varnothing+}^{(2)}(\xi)-\omega)^{-1} = \sum_{k=1}^{\infty} \frac{1}{\zeta_k(\xi)-\omega} P_k(\xi) = \frac{1}{\zeta_1(\xi)-\omega} + \mathcal{O}(1).$$

Finally, we use $\zeta_1(\xi) \sim \Lambda + \zeta_1''(\pm \kappa)\xi^2$ near $\pm \kappa$ and change the path of integration

The asymptotic formula

We obtain

$$\begin{split} \ell \cdot Q(\ell, \omega) &= Q(\ell, 0) - \omega \, T_{\ell}^* \, r_{\ell} \, K_0^* \, (I + \omega (A_{\varnothing +}^{(2)} - \omega)^{-1}) K_0 \, r_{\ell} \, T_{\ell} \\ &\sim Q_0 - \frac{8 \, \ell \cdot |\partial_2 \psi_{\pm \kappa, 2}(0)|^2}{\sqrt{\Lambda - \omega} \cdot \sqrt{2 \zeta_1''(\kappa)}} \, T_{\ell}^* \, \big(P_+ + P_- \big) T_{\ell}, \end{split}$$

Lemma (Birman-Schwinger principle)

Let $T: D(T) \subseteq H \to H$ be invertible and let $V \in \mathcal{L}(H)$, $V \ge 0$ be a rank-one perturbation. For $\alpha > 0$ we have

$$\ker(T - \alpha V) \neq \{0\} \qquad \Longleftrightarrow \qquad \alpha \cdot \operatorname{tr}(V^{1/2} T^{-1} V^{1/2}) = 1.$$

Apply the B-S principle with $V = V(\ell) := T_{\ell}^*(P_+ + P_-)T_{\ell}$. $\uparrow T_{\ell}^*(P_+ + P_-)T_{\ell}$ is a rank-two perturbation.

Another symmetry decomposition

Solution: Use an additional symmetry decomposition:

$$L_2(-1,1) = L_{2,\text{even}}(-1,1) \oplus L_{2,\text{odd}}(-1,1).$$

If $f,g \in L_2(-1,1)$ are even with respect to $x_1 = 0$, then

$$\langle T_{\ell}^{*}(P_{+} + P_{-}) T_{\ell} f, g \rangle$$

$$= \ell \left(\int_{(-1,1)} f(x_{1}) \cos(\kappa x_{1} \ell) dx_{1} \right) \cdot \left(\int_{(-1,1)} \cos(\kappa x_{1} \ell) \overline{g(x_{1})} dx_{1} \right)$$

$$= \ell \langle f, \mathbf{1} \rangle \cdot \langle \mathbf{1}, g \rangle + \mathcal{O}(\ell^{2}).$$

If f,g are odd, then

$$\begin{split} &\langle T_{\ell}^* \big(P_+ + P_- \big) T_{\ell} f, g \rangle \\ &= \ell \left(\int_{(-1,1)} f(x_1) \sin(\kappa x_1 \ell) \, \mathrm{d} x_1 \right) \cdot \left(\int_{(-1,1)} \sin(\kappa x_1 \ell) \overline{g(x_1)} \, \mathrm{d} x_1 \right) \\ &= \ell^3 \kappa^2 \langle f, \mathbf{x}_1 \rangle \cdot \langle \mathbf{x}_1, g \rangle + \mathcal{O}(\ell^4). \end{split}$$

Recall that P_{\pm} are the projections in $x_1 \mapsto e^{\pm i\kappa x_1}$

The asymptotic formula

Thus, in $L_{2,s}(-1,1)$ we obtain

$$\ell Q_{\ell,\omega} \sim Q_0 - \frac{8\ell^2 \cdot |\partial_2 \psi_{\pm\kappa,2}(0)|^2}{\sqrt{\Lambda - \omega} \cdot \sqrt{2\zeta_1''(\kappa)}} V_1,$$

where $\langle V_1 f, g \rangle = \langle f, 1 \rangle \cdot \langle 1, g \rangle$. Then

$$\begin{split} \omega & \text{ eigenvalue of } A_{\ell} \iff 0 \in \ker D_{\ell,\omega} \\ \iff & \frac{8\ell^2 \cdot |\partial_2 \psi_{\pm\kappa,2}(0)|^2}{\sqrt{\Lambda - \omega} \cdot \sqrt{2\zeta_1''(\kappa)}} \mathrm{tr}(V_1^{1/2} Q_0^{-1} V_1^{1/2}) \sim 1 \\ \iff & \sqrt{\Lambda - \omega} \sim \frac{8\ell^2 \cdot |\partial_2 \psi_{\pm\kappa,2}(0)|^2}{\sqrt{2\zeta_1''(\kappa)}} \mathrm{tr}(V_1^{1/2} Q_0^{-1} V_1^{1/2}). \end{split}$$

The asymptotic formula

Thus, in $L_{2,s}(-1,1)$ we obtain

$$\ell Q_{\ell,\omega} \sim Q_0 - \frac{8\ell^2 \cdot |\partial_2 \psi_{\pm\kappa,2}(0)|^2}{\sqrt{\Lambda - \omega} \cdot \sqrt{2\zeta_1''(\kappa)}} V_1,$$

where $\langle V_1 f, g \rangle = \langle f, 1 \rangle \cdot \langle 1, g \rangle$. Then

$$\begin{split} & \boldsymbol{\lambda}(\boldsymbol{\ell}) \text{ eigenvalue of } \boldsymbol{A}_{\boldsymbol{\ell}} \iff \boldsymbol{0} \in \ker D_{\boldsymbol{\ell},\omega} \\ & \iff \frac{8 \, \boldsymbol{\ell}^2 \cdot |\partial_2 \psi_{\pm \kappa,2}(\boldsymbol{0})|^2}{\sqrt{\Lambda - \boldsymbol{\lambda}(\boldsymbol{\ell})} \cdot \sqrt{2 \zeta_1''(\kappa)}} \mathrm{tr}(\boldsymbol{V}_1^{1/2} \boldsymbol{Q}_0^{-1} \boldsymbol{V}_1^{1/2}) \sim 1 \\ & \iff \sqrt{\Lambda - \boldsymbol{\lambda}(\boldsymbol{\ell})} \sim \frac{8 \, \boldsymbol{\ell}^2 \cdot |\partial_2 \psi_{\pm \kappa,2}(\boldsymbol{0})|^2}{\sqrt{2 \zeta_1''(\kappa)}} \mathrm{tr}(\boldsymbol{V}_1^{1/2} \boldsymbol{Q}_0^{-1} \boldsymbol{V}_1^{1/2}). \end{split}$$

Main results

Theorem (2D, $\Sigma_{\ell} := (-\ell, \ell)$)

For small $\ell > 0$ there exists exactly two eigenvalues, which satisfy

$$\begin{split} & \Lambda - \lambda_1(\ell) = \ell^4 \cdot \frac{16\pi^2 |\partial_2 \psi_2(0)|^4}{\zeta_1''(\kappa)} + \mathcal{O}(\ell^5) \qquad \text{as} \quad \ell \to 0, \\ & \Lambda - \lambda_2(\ell) = \ell^8 \cdot \frac{\pi^2 \kappa^4 |\partial_2 \psi_2(0)|^4}{4\zeta_1''(\kappa)} + \mathcal{O}(\ell^9) \qquad \text{as} \quad \ell \to 0. \end{split}$$

Theorem (3D, $\Sigma_{\ell} := B(0, \ell)$)

For every $m \in \mathbb{Z}$ there exists an eigenvalue $\lambda(\ell, m)$ such that

$$\Lambda - \lambda(\ell, m) = \ell^{6+4|m|} \cdot \frac{16\kappa^{4|m|+2} \cdot |\partial_3 \psi_3(0)|^4}{2^{4|m|} \cdot f''(\kappa)} \cdot \rho_m + \mathcal{O}(\ell^{7+4|m|}),$$

as $\ell \to 0$ for some constant $\rho_m > 0$.

Uniqueness of the eigenvalue and the 3D case

Note that the Dirichlet-to-Neumann operator acting on $L_{2,s}(-1,1)$ has a complete system of eigenfunctions corresponding to eigenvalues

$$\mu_1(\ell,\omega) \leq \mu_2(\ell,\omega) \leq \dots$$

One can show:

- $\mu_2(\ell,\omega) > 0$ for small $\ell > 0$.
- $\mu_1(\ell,\omega)$ strictly decreasing in ω .
- $\mu_1(\ell,\omega)$ strictly increasing in ℓ .

A similar assertion holds true for the part acting $L_{2,as}(-1,1)$.

In 3D we use the symmetry decomposition for the L_2 space on the crack $L_2(B(0,1)) = \bigoplus_{m \in \mathbb{Z}} L_{2,m}(B(0,1))$, where

$$L_{2,m}(B(0,1)) := \{ g \in L_2(B(0,1)) : g(r\cos\varphi, r\sin\varphi) = e^{im\varphi}\widetilde{g}(r)$$
 for some $\widetilde{g} : (0,1) \to \mathbb{C} \}.$

Thank you for your attention!