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Introduction

General Subject:
@ Elastic media with a (small) perturbation.

Subject of the present talk:
o Existence of trapped modes
harmonic oscillation near the perturbation
(embedded) eigenvalues of a suitable differential operator.

1

Applications:
e Non-destructive testing theory (wings of airplanes or sensitive

structures).
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General setting

Let Q:=Rx (-%,5) and denote by X, = (-¢,7) the crack. Let
Qg :=Q\(Z, x {0}). We consider the elasticity operator in Ly(Q;C?)
and traction free boundary conditions on 0Q,.

—
Zy

The operator acts as
As, = —pA — (A + p) graddiv
on functions ue H'(Q;C?) such that
(Adivu+2uE(u))-n=0 on Q.

Here p and A are the Lamé constants and E(u) = (0;uj +0;u;)jj=1,2 is
the strain of the elastic material.

e Existence of (embedded) eigenvalues?

@ Asymptotic behaviour as ¢ — 07
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Main result

Theorem

Let p=1, A=0. For small ¢ >0 the operator As, has (at least) 2
eigenvalues, which satisfy

A-M(0)=0*vi+6(¢°) as -0,
A=A(0) =08 vy +0(£%) as ¢—0,

with v1,va > 0.

Principal characteristics of the problem:
o Non-additivity of the perturbation.
@ Matrix structure of the differential operator.
e Empty discrete spectrum; indeed, 0(As,) = 0ess(As,) =[0,00).
Ansatz:
@ Use the Dirichlet-to-Neumann mapping to transform the original
problem into an boundary integral problem.
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Internal symmetries

Reflection in the horizontal axis leads to a decomposition

[(2C)=H e H® and As, =A}, 0 AY.

Symmetric waves Antisymmetric waves
—/¥ ¢
L il
,— ................. _—"_, I
JESEESRNRRNENS o FNNNN- SRARRERRNEE]
-
ur(xa,x2) = u1(x1, —x2) u1(xa, %) = —u1(x1, —x2)
uz(x1,%2) = —u2(x1, —x2). uz(x1,x2) = u2(x1, —x2).
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Reduction to a mixed problem

Considering only symmetric waves we obtain a problem on the upper
half-strip Q. :=Rx (0,%). We search for A(¢) 20 and ue H'(Q,;C?)
such that

(A - grad div)u=A(¢)u in Q.

with boundary conditions

(01 us + 62 U1) (Xl
262 u» (Xl

,%) =0 for x1 €R,
,%) =0 for x1 €R,
—(01up +0u1)(x1,0) =0  for xeR,
—262U2(X1,0) =0 for X1€Zg=(—f,€),
U2(X]_,0) =0 for X1 ¢Z[.
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Reduction to a mixed problem

Considering only symmetric waves we obtain a problem on the upper
half-strip Q. :=Rx (0,%). We search for A(¢) 20 and ue H'(Q,;C?)
such that

(—A - grad div)u = Af) wu in Q4

with boundary conditions
(61U2 +62U1)(X1,%) =0 for x; € R,
205U (X1, %) =0 for x; €R,
—(01U2+02U1)(X1,0) =0 for xeR,

uy =2871(x1,0) =0g for x; € R.
> 0) =0 for x1 €377

@ Provide the boundary data g and calculate v.
@ If 205up(x1,0) =0, x1 € Z4, then w = A(?).
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The solution of the Poisson problem

Let w € C\{0}. Applying the Fourier transform into the horizontal
direction we obtain

(252 -85 —i¢0;

—i¢0> 62—za§)ﬁ(f’x2)=wﬁ(f»><2) + (b.c).

We have G(¢,x2) = X7, ai(§,)vj(x2), where

vip(xe) = ( i_-? )eiiﬁXZ; v3a(x2) = ( ify )eii”Q;

with f=+/w—-¢2 and y= /% —¢&2. Inserting the boundary conditions
leads to a linear system

O O O

L(¢,w)a(é,w) = , L(¢,w) e RM4,

g

—

$)
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The Poisson and the Dirichlet-to-Neumann operator

We have

T

det(L(¢,w)) =32y2(y? + &2) [sin (ﬁg)cosy3 +cos (ﬁg)sin (yg)ﬁf2].

Reminder: The Rayleigh-Lamb equation describes the spectrum of the
unperturbed operator Ag.
We define for w ¢ [0,00) = 0(Ag+) = Tess(As,+):

e Poisson operator K, : H/?(R) — H'(Q;C?), K,g:=u.

o D-to-N operator D, : HY/?(R) — H™Y/2(R), Dyg := —202u2lpx(0}-
We have D,g(€) = my(&)g(¢) for some function my:
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The Poisson and the Dirichlet-to-Neumann operator

We have
—a9v2(2 2 22\ [an (g 3 N (v g2
det(L(¢ w)) =32y~ (y~ +¢&9) [sm(ﬁz)cosy +cos(,62)sm (Yz)ﬁg ]
Reminder: The Rayleigh-Lamb equation describes the spectrum of the

unperturbed operator Ag.

We define for w ¢ [0,00) = 0(Ag+) = Tess(As,+):

e Poisson operator K, : H/?(R) — H'(Q;C?), K,g:=u.

o D-to-N operator D, : HY/?(R) — H™Y/2(R), Dyg := —202u2lpx(0}-
We have D,g(€) = my(&)g(¢) for some function my:

—2sin( )sm(
(y?+¢&2

7/7)[7’ +2y §4+§6]+4[cos( )cos = 1][37,352
)

sm( )cos(y2)y3+cos( )sm(%)
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The truncated Dirichlet-to-Neumann operator

For w ¢ [0,00) the truncated Dirichlet-to-Neumann operator is given by
Dgyw : dom( Dg,w) e ran( Dg,w), Dg’w =1y Dweg,

where
@ e/ = extension by 0;
@ ry = restriction to the interval (-¢,¢);

e dom(Dy,),ran(Dy,,) are suitable function spaces on (—¢,¢).

André Hanel Spectral asymptotics for an elastic crack problem



The truncated Dirichlet-to-Neumann operator

For w ¢ [0,00) the truncated Dirichlet-to-Neumann operator is given by

Dy Hi/Z = HY3(=0,0),  Dpy:=reDuer,

where
@ ey = extension by 0;

@ ry = restriction to the interval (-¢,¢);
1/2
H[—/M] = {ge Ly(—¢,0): ege Hl/z(R)},

H2(=¢,0) = {he@’(—é,é) :3he HY2(R) st. h= rﬂ;}.

Lemma
weoy(As,+) = ker Dy, # {0}.

Idea: Let £ — 0 and find w = f(¢) such that ker Dy ,(¢) # {0}.
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Analysis of the Dirichlet-to-Neumann operator

A\ We have 0(As,+) =[0,00), 04(Az,+) = 2.
@ Use the symmetry decomposition L2(Q+;C2) = Hi4 ® Hy, with
Hy+ = {(u1(x1),0) 7). Then

As, = A(le) & A(Zi)’ Uess(A(zi)) = [A'OO)
with A >0. Moreover,
Ko : Hl/z(R) - Hl(Q+;C2) NHoy, Dy : H1/2(R) - H_1/2(|R)

are well-defined for [A,00).

A\ The domain of D, depends on .
o Let Ty:Ly(=1,1) = Lo(=2,¢), (Tyg)(x)=¢"?g(x/¥) and
define

Q) HE = H2(-11), Q)= T;DeuTe.
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A scaling argument

A\ How to describe the D-to-N operator as £ — 0 and w — A?

@ Use the perturbation formula
P K (2) _ -1
Dy =Dy -wKy (I +w(As] —w) ) Ko

From mo(¢) =1£]+ O(1) we obtain

(Q(£,0)g, by = f mo(&/0)&() h(€) dé
1
gfm 2(6)B(6) e +0(1) = 5(Qog, By +0(1),

where

(Qog, hy = fR 1€1-8() A(E) dé.
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The unperturbed operator

Applying the Fourier transform in the horizontal direction one obtains
a family of self-adjoint operators (Ag+)cer, where

28203  -iéo, )

A®+(f)::( _i€a2 52_263

D(Ag+ (&) :=tue H*(I;C?): dpur(£m/2)=0A

Oour (£7/2) +i€up(+7/2) = 0}.

Then:
@ weo(Ag+(&)) if and only if
sin (ﬁg) cos (y%))ﬁ + cos (ﬁg)sin (yg) BE? =0.
o If w:(x2) is an eigenfunction of Az (&) then w:(x2) € is a
generalised eigenfunction of Ag..
0 0(Ag+) =Urer0(Az+(£)) =[0,00).
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The unperturbed operator

Applying the Fourier transform in the horizontal direction one obtains
a family of self-adjoint operators (Ag}r)geg@, where

28203  -iéo, )

@ (zy.—
A®+(é)'_( —if@g 52_263

D(AC)(£)) 1= e H2(1,;€): dpun(£m/2)=0 AuL1A

Oun (27/2) +ilup (27 /2) =
Then:
° wEU(Afal(é)) if and only if w #2&2 and

sin (ﬁg) cos ()/5) y3 + cos (ﬁg) sin (yg) BE2 =0

o If y¢(x2) is an eigenfunction of A(zl(é) then w¢(x) e is a
generalised eigenfunction of A( )
2 2
o o(A2)) = Ueeno (AZ)(6)) = [ co):
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@ x-axis: parameter .

@ y-axis: eigenvalues of Ag,(¢).
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The dispersion curves of Ag+

\/\/ﬁ @ x-axis: parameter £.

@ y-axis: eigenvalues of Ag}r(f).

14f,

05 00 05

Let {1(¢) be the lowest eigenvalue branch of A(Qi)r. Then

A=mini(1(¢): £ €R} =info(AL)) = inf oess (AL, ).
We have (1(+x) = A,
x=0.632138+107° and A=1.887837+107°.
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Estimate of the resolvent term

Lemma
We have

o T reKE (1 +0(AL) —w) Y Kor, T
_ 8102y, 2(0)12
VA—-w-/20](x)

T, (P++P)T,+0(1).

The remainder may be estimated uniformly in the operator norm of
Lr(-1,1).

Here
@ P, is the projection in Ly(—1,1) onto the subspace spanned by
q)i (X]_) = eiiKX:[
® Wiy € Lo(l4;C?) is chosen such that

Agi(iK)Wﬂ =AY and Il ez =1 (1)
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|dea of the proof
We use a resolvent expansion of Ag}r near the bottom of the essential
spectrum. For f,g € Ly(Z/) we have

(K5 ()~ ) Kot ) = [ (Ko(E)(AL)(6) - )86, Ko(E) (e ¢

where Ko(+) is the paremeter-dependent Poisson operator. From the
spectral theorem we obtain

) o)l e 1 _ 1
(A®+(€) ) ' /(X::l(k(f)—wpk(g) (1(6)_0) +@(1)

Finally, we use {1(¢) ~A+(’1’(i1<)§2 near +x and change the path of
integration

-k—-0 -k —-K+0 k-0 Kk _ _K+0
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The asymptotic formula

We obtain
0-Q(l,0)= Q(£,0) - T; rKE (I + (A2 —w) ) Kor, T,

8£-|62w+,<2(0)|2

T (Ps+P)Ty,
VA 2¢7(x)

~Qo—

Lemma (Birman-Schwinger principle)
Let T:D(T)< H— H be invertible and let V€ £(H), V=0 be a
rank-one perturbation. For @ >0 we have

ker(T_aV)?f{O} — a.tr(V1/2T—1vl/2):1

Apply the B-S principle with V = V(£):= T; (P, +P-)Ty.
VAN T, (P +P_)T, is a rank-two perturbation.
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Another symmetry decomposition

Solution: Use an additional symmetry decomposition:
L2(_1; 1) = L2,even(_1» 1) @ L2,odd(_1’ 1)-
If f,gely(—1,1) are even with respect to x; =0, then
(T, (P++ P_)Tyf,g)
=/ (f f(x1)cos(xx1€) dxl) . (f cos(kx1€)g(x1) dxl)
(-11) (-11)
=0(f,1)-(1,8) +O(¢?).
If f,g are odd, then
(T;(P+ +P_)T,f,g)
=€(/ f(x1)sin(xx1€) dx1)~(f sin(leé)g(Xl)dxl)
(-L1) (-11)
= 0362 (F,x1) - (X1,8) +@’(€4).

Recall that P, are the projections in xq — e**x1
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The asymptotic formula

Thus, in Lyg(—1,1) we obtain

80210214y 2(0)1
VA-w-1/20(x)

where (V1f,g)=(f,1)-(1,g). Then

Qe ~ Qo— V1,

w eigenvalue of Ay < 0Oeker Dy,

2-
8021021 4xc,2(0)1 (V1/2QO 1/2) 1

VA 2¢7(x)
- A—w~8£ 1021 41,2(0) 12 (V1/2QO 1/2)'
2¢7(x)
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The asymptotic formula

Thus, in Lyg(—1,1) we obtain

80210214y 2(0)1
VA-w-1/20(x)

where (V1f,g)=(f,1)-(1,g). Then

Qe ~ Qo— V1,

A(¢) eigenvalue of Ay < 0¢€ker Dy,
802102y +,2(0)I?
VA-A(Y ,/2(”
80210 2
— / _ 2W 4x,2(0) (\/1/2(?0 1/2)‘

(Il( )

(Vl/on 1/2) 1
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Main results

Theorem (2D, X,:=(-¢,7))

For small £ >0 there exists exactly two eigenvalues, which satisfy

167210,1>(0)*
¢y (x)

2.4 4
10212(0)]
A—A>(¢ 258-”—+@ /P as ¢—0.

A=A ()= 0% +0(°) as ¢—0,

Theorem (3D, X, := B(0,¢))

For every me Z there exists an eigenvalue A(¢, m) such that

16K4\m|+2 . |03U/3(0)|4

_ pb6+4|m|
A=Al m) = )

Om + @([7+4|m|)’

as ¢ — 0 for some constant pp, > 0.
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Uniqueness of the eigenvalue and the 3D case

Note that the Dirichlet-to-Neumann operator acting on Ly (—1,1) has
a complete system of eigenfunctions corresponding to eigenvalues

w(lw)<uw(lw)<...

One can show:
@ us(¢,w)>0 for small ¢>0.
® (¢, w) strictly decreasing in w.
o 11 (¢, w) strictly increasing in £.
A similar assertion holds true for the part acting Ly as(-1,1).

In 3D we use the symmetry decomposition for the L, space on the
crack Lp(B(0,1)) = ® mezLo,m(B(0,1)), where

Ly m(B(0,1)):={g e L2(B(0,1)): g(rcose,rsing) = ei’”"’g(r)
for some g:(0,1) — C}.
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Thank you for your
attention!
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