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1 Introduction

Quantum waveguides with combined boundary conditions

e possible new microelectronic elements (if boundary conditions realizable)

e mathematical challenge

Straight quantum waveguides with the combined Dirichlet and Neumann boundary conditions are

studied for years:



Effectively for the wave functions of special symmetry

e D. V. Evans, M. Levitin, D. Vassiliev, J. Fluid Mech. 261 (1994), 21.

e P. Exner, P. Seba, M. Tater, D. Vanék, J. Math. Phys. 37 (1996), 4867.
Bound states

e J. Dittrich, J. Kiiz, J. Math. Phys. 43 (2002), 3892.

e D. Borisov, G. Cardone, J. Math. Phys. 52 (2011), 123513.
3-D Dirichlet layer with Neumann windows

e H. Najar, O. Olendski, J. Phys A44 (2011), 305304.

Heat equation time decay

Infinitely many changes of boundary condition type

e D. Borisov, R. Bunoiu, G. Cardone, Ann. H. Poincaré 11 (2010), 1591; C. R. Acad. Sci. Paris,
Ser. 1349 (2011), 53.

Limit of infinitely thin waveguide - Dirichlet-like decoupling
e D. Borisov, G. Cardone, J. Math. Phys. 53 (2012), 023503.



Review on many aspects of quantum waveguides in

e P. Ener, H. Kovaiik: Quantum Waveguides, Springer, 2015
Scattering: Chapter 2.

Our task:
Scattering in a planar straight waveguide
Ph. Briet, J. Dittrich, E. Soccorsi, J. Math. Phys. 55 (2014), 112104
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The Hamiltonian is the H = —A, Laplace operator in the
waveguide ) = (—o0, +00) X (0, d) with the indicated combined
boundary conditions.

D(H) = {¢ c Wh2Q) | — Ay € LAQ), w(z,0) =0 |

oY(x,0)
Qy

oY(x,d)
dy

Not W22(Q) but contained in WZQO’CQ(Q)

For any open {2y C (),

2N {(0,0), (0,d)} =0 = D(H) C W>*((y)

- cf. M.S. Birman, G.E. Skvortsov, IVUZ, Mat. 30(5) (1962),
12: J. Dittrich, J. Kif7, J. Math. Phys. 43 (2002), 3892.

=0 for x <0, ¢Y(x,d) =0, —Oforx>0}



As reference (free motion) Hamiltonians for the scattering we
use two — Laplace operators with Dirichlet boundary condition
on the whole lower boundary y = 0 and Neumann boundary
condition on the whole upper boundary y = d or vice versa.
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> =X
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Hamiltonian H;. Hamiltonian H.

Transversal modes
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2
with eigenvalues u, = (2n — 1)24%2. We consider scattering

from left (zr — —o0) to right (r — 4o00), formulas for ener-
gies between pq and po shown here but similarly for any initial
transversal mode.

2 Stationary scattering method

Let us look for the function f satisfying ”stationary Schrodinger
equation”

<@ _ a_y2> fk,z,y) = (1 + k) f(k, 2, y)

where

0 < k<= =2
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flkz,y) = T @)+ e ™ )+ 3 rak) ey y)

n=2
for x <0
flk,z,y) = ti(k)e™y +Ztn —hnt ()
for > ()

2
:\/,L‘n_,ul_'lf2 = \/ml)ﬁﬂ

Expected matching conditions

f(kao_a') :f<k70+7°) 9

in a sense to be precised.

0 0

%f(lﬁo_a ) — a_



The coefficients r,, and ¢, should be derived from these condi-
tions.

Fewh?((=L,0) x (0,d)) =

1
9,2

o O
Zn!rn\Q < 00, Zn\tn|2 < oo, f(k,0F, ) e Wi ((0,d))
n=1 n=1

\

ana%ﬂﬂ < 00 p
n=1

1
952

WE((0,d) =4S ay
| n=1

)
Hilbert spaces with scalar products

(f,g)x=) nay bl
n=1



Common matching value

F(k,0,) € WE(0,d)) = W2((0,d) n W22((0, )

Hilbert space if equipped with a scalar product and the corre-
sponding norm

(f,9)0 = (f,9)-+(f,9)+
1£l0 = /112 + 1£12

and therefore reflexive.
1
2

1 1
Might be our W02’2 smaller than "standard W™ " which is the space of

1.9
traces from W, 7
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Schrodinger equation in distributional sense =—>

(S F 07,0 0) = (o (R, 07 ) )

for w € COO.

1
2
Require equality in W), 2

Let us define projectors

(=), (=) (+) ()

Pn:Xn (Xn 7')7Qn:Xn (Xn 7’)7”21727”‘
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and an operator

©.9 ®.9
n=>2 n=2

b WE (08 W (0.8) = WH (@, 8

Derivative matching condition reads

00
Doy = _Zkal for ¢ = Z tan = Xg_) T Z TnX7(1+)

Evidently at most one solutlon. To prove its existence consider

first
00 00
D2 — anpn+zann
n=2 n=2
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Do is strictly positive as

72 — 47+ 4
max(||(I=Pp)el|, [[(I=Q1)ell) = nllel] , n= \/ >0

2m? — Am +4
for ¢ € L*((0,d)). Try to solve
Do =1
5.2

1
19 1
where ¢ € W;7((0,d)) is unknown and ¢ € W, #7((0,d)) is
oiven. This is an equation for the extremals of the functional

F(p) = (Dap, ) — (¥, p) — (¥, ¢)
L9

F'is a real functional on a reflexive Banach space W™ ((0,d)),
weakly lower semicontinuous, coercive, strictly convex. So unique
minimum of F' exists.
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_ 1 1
172_1 maps W), 2’2((0, d)) onto WOQ’Q((O, d)) and therefore is

bounded.
The matching condition reads

o — kD3 (PL+ Qu)p = —2ikDy |
Let us denote R the projector onto Span{xg_), XYF)} in L*((0, d)).

o1 =VP +QiRp ,p2=(I—R)p
P 4+ Qq invertible in Ran(R)
Projected matching condition
o1 — iky/Pl + QIRDy 'R/Pi + Qi1 = —2iky/Pi + QIRD; x|
oy — ik(I — R)Dy'Ry/Py + Qupr = —2ik(I — R)D; ')
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(01 1s solution of a linear equation in 2-dimensional space con-
taining a Hermitian non-negative matrix

M = /P, +QRD;'R\/P| + @y
9 1s expressed through 1. Sufficient to show that
det(Iy — kM) = (1 —imq)(1 —imy) # 0

m1, mo > 0 eigenvalues of M.
The determinant is non-zero in any case. Solutions ¢ and f
exist.
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An operator

o0 2
-
A:anpn : kn\/n(n—l)ﬁ—kQNn
n=2

entered our equations

OA =k kool
S kn . Eol
ok kn, kn, n
n=2
Better convergency than in A.

Coefficients ry,, t;,, are continuously differentiable functions of k
(in our energy range at the least).

||| is continuous in k.
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3 Scattering states

Let a € C§°(R),
suppa C [A, B] C (0,v/p2 — p1) C (0, +00)\{Vitn — p1}p21

Let us construct a state evolving according to our Hamiltonian

U(t, r,y) = / a(k)e PRI £ (e 2,y dR
R

and asymptotic states which are superpositions of states evolv-
ing according to the reference Hamiltonians

—i Dt ik (=
w(_>(t,:1:,y) = /Ra(k)e (p1+k%)t ik X§ )(y) dk

VIt z,y) = /

R

—i 2 —ikx. (= ika
alk)e= I Ly (ke oD ) + (ke xy) | dk
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If r,, and ¢, are continuously differentiable functions of k and
> ooy ‘Tn(k)|2, > 2y |tn(/~c)\2 locally bounded in k , then

Jim (e, ) =9 ) =0
t—lg?oo Wt — @, M2y =0

This justifies the use of stationary scattering method for our
system and shows that r{(k) and t1(k) are the reflection and
transmission coefficients for the transversal modes Xgi) and lon-

gitudinal momentum k.
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4 Numerical results
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5 Conclusions

e Scattering through a straight quantum waveguide with a sim-
ple combination of Dirichlet and Neumann boundary condi-
tions is studied.

e Stationary scattering method is justified. The proof of the
solution existence for the matching conditions is given.

e For the lowest energy (k = 0), the total reflection occurs in
accordance with the Borisov and Cardone proof of the two
halves of waveguide decoupling in the limit of zero width.

arXive: 1408.3958 [math-ph]|
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