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Reduced basis and greedy algorithms

Formulation of many design problems in engineering :

optimal control problems with parametric PDE constraints

→ frequent numerical solution of a PDE depending on dynamically
updated parameters

Model situation : (H, ‖ · ‖) Hilbert space, D ⊂ Rd compact and (aµ)µ∈D
a family of symmetric, continuous, and elliptic bilinear forms

aµ : H × H → R,

so that ‖ · ‖µ = aµ(·, ·)1/2 are uniformly equivalent to ‖ · ‖ :

c‖u‖ ≤ ‖u‖µ ≤ C‖u‖, u ∈ H, µ ∈ D.
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Typical optimal control problem

min
µ∈D

J(uµ),

for some functional J, where uµ ∈ H is the solution of the variational
problem

aµ(uµ, v) = Φ(v), v ∈ H, (1)

with Φ ∈ H ′.

→ Employing a standard highly accurate numerical solution of the PDE
for each parameter value µ ∈ D is “infeasible”.

→ Remedy : exploit the compactness of the set

F := {uµ; µ ∈ D}

in the energy space H.
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→ Reduction : construct a finite dimensional subspace Hn of H from
which any element in the compact set F can be well approximated.

Usually
Hn = span{fj ; j = 0, . . . ,m − 1}, fj := uµj .

(f0, . . . , fm−1) is called reduced basis.

→ Key question : find “good” parameters µj or, equivalently, good basis
functions fj ∈ F : greedy stategy.
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→ Problem : find functions {f0, . . . , fm−1} so that each f ∈ F is well
approximated by the elements of the subspace Fn := span{f0, . . . , fm−1}.

Greedy algorithm :

f0 = argmaxf∈F‖f ‖, F1 = span{f0}.

If f0, . . . , fm−1 have been chosen, Fm = span{f0, . . . , fm−1} and Pm is the
projector onto Fm, we choose fm as

fm = argmaxf∈F‖f − Pmf ‖.

“Computationally not feasible” → weak greedy algorithm
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Strategy : substitute the error ‖f − Pmf ‖ by a “surrogate” rm(f )
satisfying

c∗rm(f ) ≤ ‖f − Pmf ‖ ≤ c∗rm(f ), f ∈ H.

In other words, we seek fm so that

fm = argmaxf∈F rm(f ).

It is worth mentioning that

‖fm − Pmfm‖ ≥ γmax
f∈F
‖f − Pmf ‖, γ =

c∗
c∗
∈ (0, 1).
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Let Rµ ∈ B(H ′,H) be the resolvent associated to the variational problem
(1)

Rµ : Φ ∈ H ′ → RµΦ := uµ ∈ H.

Objective : provide greedy and weak greedy algorithms independent of
the given source terms.

Roughly, we need to carry out greedy algorithms when the preceding F is
substituted by the following one

F = {Rµ; µ ∈ D}.
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Two references :

P. Binev, A. Cohen, W. Dahmen, R. De Vore, G. Petrova and P.
Wojtaszczyk,
Convergence rates for greedy algorithms in reduced basis methods,
SIAM J. Math. Anal. 43 (3) (2011), 1457-1472.

A. Buffa, Y. Maday, A. T. Patera, C. Prud’homme and G. Turinici,
A Priori convergence of the greedy algorithm for the parameterized
reduced basis,
Math. Model. Numer. Anal. 46 (2012), 595-603.
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Let Ω ⊂ Rn bounded [ 2], n ≥ 1. Fix 0 < σ0 < σ1 and set

Σ = {σ ∈ L∞(Ω); σ0 ≤ σ ≤ σ1 a.e. in Ω}.

As usual H1
0 (Ω) is endowed with the norm

‖w‖H1
0 (Ω) = ‖∇w‖L2(Ω)n .

Denote by 〈·, ·〉−1,1 the duality pairing between H−1(Ω) and H1
0 (Ω). Let

f ∈ H−1(Ω) and σ ∈ Σ. By Lax-Milgram’s lemma the variational problem∫
Ω

σ∇u · ∇v = 〈f , v〉−1,1, v ∈ H1
0 (Ω),

has a unique solution uσ ∈ H1
0 (Ω). Moreover,

‖uσ‖H1
0 (Ω) ≤ σ−1

0 ‖f ‖H−1(Ω).

2. It is enough to assume that Ω has the Poincaré inequality.
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Whence the bounded operator, where σ ∈ Σ,

Aσ : H1
0 (Ω)→ H−1(Ω) : Aσu = −div(σ∇u)

has an inverse Rσ := A−1
σ ∈ B(H−1(Ω),H1

0 (Ω)).

The norm of B(H−1(Ω),H1
0 (Ω)) is denoted by ‖ · ‖−1,1.

Theorem 1

For any σ, σ̃ ∈ Σ,

σ2
0‖Rσ − Rσ̃‖−1,1 ≤ ‖σ − σ̃‖L∞(Ω) ≤ σ2

1‖Rσ − Rσ̃‖−1,1. (2)
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If d∞ be the distance induced by the L∞ norm, inequality (2) in Theorem
1 can rephrased as

σ2
0dR ≤ d∞ ≤ σ2

1dR on Σ× Σ,

where dR is the metric on Σ defined as follows

dR(σ, σ̃) = ‖Rσ − Rσ̃‖−1,1, σ, σ̃ ∈ Σ.



Lipschitz stability of the conductivity coefficient as a function of the resolvent
Conductivity as function of the resolvent

The first inequality in (2) is contained in the following lemma.

Lemma 2

For any σ, σ̃ ∈ L∞(Ω) satisfying σ0 ≤ σ, σ̃,

‖Rσ − Rσ̃‖−1,1 ≤ σ−2
0 ‖σ − σ̃‖L∞(Ω).

This lemma is proved in a straightforward manner by using energy
estimates.
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The proof of the second inequality in (2) is based on

Lemma 3

Let γ ∈ L∞(Ω). For a.e. x0 ∈ Ω, there exists a sequence (ux0,ε) in H1
0 (Ω)

so that ‖ux0,ε‖H1
0 (Ω) = 1, for each ε, and

lim
ε

∫
Ω

γ(x)|∇ux0,ε|2dx = γ(x0).
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Corollary 4

Let γ ∈ L∞(Ω) so that∫
Ω

±γ|∇u|2dx ≤ C , for any u ∈ H1
0 (Ω), ‖u‖H1

0 (Ω) = 1,

for some constant C > 0. Then

‖γ‖L∞(Ω) ≤ C . (3)
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Let σ, σ̃ ∈ Σ0. From the identity

Aσ − Aσ̃ = Aσ(Rσ̃ − Rσ)Aσ̃,

we get
‖Aσ − Aσ̃‖ ≤ σ2

1‖Rσ − Rσ̃‖. (4)

On the other hand

〈(Aσ − Aσ̃)u, v〉−1,1 =

∫
Ω

(σ − σ̃)∇u · ∇vdx , u, v ∈ H1
0 (Ω),

implying∫
Ω

(σ − σ̃)∇u · ∇vdx ≤ ‖Aσ − Aσ̃‖‖‖u‖H1
0 (Ω)‖v‖H1

0 (Ω), u, v ∈ H1
0 (Ω).
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The last inequality and (4) entail∫
Ω

±(σ − σ̃)|∇u|2dx ≤ σ2
1‖Rσ − Rσ̃‖, u ∈ H1

0 (Ω), ‖u‖H1
0 (Ω) = 1

which yields the second inequality of (2) by Corollary 4.
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The Neumann case

For σ ∈ Σ, define AN
σ : H1(Ω)→ (H1(Ω))′ by

〈AN
σ u, v〉 :=

∫
Ω

σ∇u · ∇vdx +

∫
Ω

uvdx , u, v ∈ H1(Ω),

where 〈·, ·〉 is the duality pairing between (H1(Ω))′ and H1(Ω).
AN
σ is bounded and, with σ1 = max(σ1, 1),

‖AN
σ u‖(H1(Ω))′ ≤ σ1‖u‖H1(Ω), u ∈ H1(Ω).



Lipschitz stability of the conductivity coefficient as a function of the resolvent
Neumann and Robin boundary conditions

If f ∈ (H1(Ω))′, we get by applying Lax-Milgram’s lemma that the
variational problem∫

Ω

σ∇uσ · ∇vdx +

∫
Ω

uσvdx = 〈f , v〉, v ∈ H1(Ω) (5)

has a unique solution uσ ∈ H1(Ω).

Whence AN
σ uσ = f and v = uσ in (5) implies

‖uσ‖H1(Ω) ≤ σ−1
0 ‖f ‖(H1(Ω))′ , with σ0 = min(σ0, 1). (6)

Thus AN
σ has a bounded inverse

RN
σ := (AN

σ )−1 : (H1(Ω))′ → H1(Ω).



Lipschitz stability of the conductivity coefficient as a function of the resolvent
Neumann and Robin boundary conditions

As
〈(AN

σ − AN
σ̃ )u, v〉 =

∫
Ω

(σ − σ̃)∇u · ∇vdx , u, v ∈ H1(Ω),

we get similarly to Theorem 1

‖σ − σ̃‖L∞(Ω) ≤ σ2
1‖RN

σ − RN
σ̃ ‖−1,1.

On the other hand,

σ2
0‖RN

σ − RN
σ̃ ‖−1,1 ≤ ‖σ − σ̃‖L∞(Ω).

In other words, we have

σ2
0‖RN

σ − RN
σ̃ ‖−1,1 ≤ ‖σ − σ̃‖L∞(Ω) ≤ σ2

1‖σ − σ̃‖L∞(Ω).
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The Robin case

Assume that Ω has Lipschitz boundary Γ.
Pick β ∈ L∞(Γ) so that β ≥ 0 and β ≥ β0 on an open subset Γ0 of Γ,
where β0 > 0 is some constant. Consider the Robin BVP

− div(σ∇u) = f in Ω and σ∂νu + βu = 0 on Γ, (7)

where ∂ν = ν · ∇ with ν the exterior normal unit normal vector field on Γ.
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If σ ∈ Σ, define AR
σ : H1(Ω)→ (H1(Ω))′ by

〈AR
σu, v〉 :=

∫
Ω

σ∇u · ∇vdx +

∫
Γ

βuvdS(x), u, v ∈ H1(Ω).

Equip H1(Ω) with the norm

‖u‖H1(Ω) =
(
‖∇u‖2L2(Ω)n + ‖u‖2L2(Γ0)

)1/2
. (8)

AR
σ is bounded and

‖AR
σu‖(H1(Ω))′ ≤ σ1‖u‖H1(Ω), u ∈ H1(Ω), with σ1 = max(σ1, κ‖β‖L∞(Γ)),

where κ is the norm of the trace operator u ∈ H1(Ω)→ u|Γ ∈ L2(Γ)
when H1(Ω) is endowed with the norm (8).
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Consider the bilinear form

a(u, v) =

∫
Ω

σ∇u · ∇vdx +

∫
Γ

βuvdS(x), u, v ∈ H1(Ω).

u → a(u, u) defines a norm on H1(Ω) equivalent to the usual norm on
H1(Ω). Let f ∈ (H1(Ω))′. By Riesz’s representation theorem, there exists
a unique uσ ∈ H1(Ω) satisfying

a(uσ, ψ) =

∫
Ω

σ∇uσ ·∇ψdx +

∫
Γ

βuσψdS(x) = 〈f , ψ〉, ψ ∈ H1(Ω). (9)

Note that uσ is nothing but the variational solution of the BVP (7).
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From (9),

‖uσ‖H1(Ω) ≤ σ0‖f ‖(H1(Ω))′ , with σ0 = min(σ0, β0).

Consequently, AR
σ possesses a bounded inverse

RR
σ = (AR

σ )−1 : (H1(Ω))′ → H1(Ω)

defined by RR
σ f := uσ for f ∈ (H1(Ω))′.

Starting from

〈(AR
σ − AR

σ̃ )u, v〉 =

∫
Ω

(σ − σ̃)∇u · ∇vdx , u, v ∈ H1(Ω),

we get similarly to the Neumann case

σ2
0‖RR

σ − RR
σ̃ ‖−1,1 ≤ ‖σ − σ̃‖C(Ω) ≤ σ

2
1‖RR

σ − RR
σ̃ ‖−1,1,
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Non homogeneous BVP’s

Ω is a C 2-smooth bounded domain of Rn, n ≥ 2, diffeomorphic to the
unit ball of Rn, and Γ = ∂Ω.
Let σ ∈ Σ. For g ∈ H

1
2 (Γ) [ 3], denote by uσ ∈ H1(Ω) the unique weak

solution of the BVP

div(σ∇u) = 0 in Ω and u = g on Γ.

We prove
‖uσ‖H1(Ω) ≤ (1 + σ−1

0 σ1)‖g‖
H

1
2 (Γ)

.

Then Rσ given by Rσg := uσ defines a bounded operator from H
1
2 (Γ)

into H1(Ω) and
‖Rσ‖ 12 ,1 ≤ 1 + σ−1

0 σ1.

Here ‖ · ‖ 1
2 ,1

denotes the norm in B(H
1
2 (Γ),H1(Ω)).

3. Here H
1
2 (Γ) is viewed as the quotient space H1(Ω)/H1

0 (Ω).
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Fix g ∈ C 2(Γ) so that

Γ− = {x ∈ Γ; g(x) = min g} Γ+ = {x ∈ Γ; g(x) = max g}

are nonempty and connected, and the following condition fulfills : there
exists a continuous non decreasing function ψ : [0,∞)→ [0,∞) with
ψ(0) = 0 and ρ0 > 0 so that, for any 0 < ρ ≤ ρ0,

|∇τg | ≥ ψ(ρ), on {x ∈ Γ; dist(x , Γ− ∪ Γ+) ≥ ρ}.

where ∇τ denotes the tangential gradient.
Such a function is called quantitatively unimodal.
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For σ1 > σ0, define

E = {σ ∈W 1,∞(Ω); σ0 ≤ σ and ‖σ‖W 1,∞(Ω) ≤ σ1}.

Theorem 5

[ a]There exist two constants C > 0 and γ > 0, that can depend on Ω, E
and g, so that

‖σ − σ̃‖L∞(Ω) ≤ C‖Rσg −Rσ̃g‖γL2(Ω), σ, σ̃ ∈ E0,

where E0 = {σ ∈ E ; σ = σ on Γ}, for some fixed σ ∈ E .

a. G. Alessandrini, M. Di Cristo, E. Francini and S. Vessella, Stability for quantitative
photoacoustic tomography with well chosen illuminations, arXiv :1505.03657.
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Corollary 6

There exist two constants C > 0 and γ > 0, that can depend on Ω and
E , so that

‖σ − σ̃‖L∞(Ω) ≤ C‖Rσ −Rσ̃‖γ1
2 ,1
, σ, σ̃ ∈ E0,

where E0 is as in the preceding theorem.

This result can be interpreted as a Hölder stability estimate of
determining σ from Rσ.
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The one-dimensional case

Consider the BVP

− (σ(x)ux)x = f in (0, 1) ux(0) = 0 and u(1) = 0. (10)

Recall
Σ = {σ ∈ L∞((0, 1)); σ0 ≤ σ ≤ σ1 a.e. in (0, 1)}

and let H = {u ∈ H1((0, 1)); u(1) = 0} equipped with the norm

‖u‖H = ‖ux‖L2((0,1)).

By Lax-Milgram’s lemma or Riesz’s representation theorem, for each
f ∈ H ′, there exists a unique u = uσ ∈ H so that∫ 1

0
σ(x)ux(x)vx(x)dx = 〈f , v〉, v ∈ H,

where 〈·, ·〉 is the duality pairing between H and its dual H ′. Note that uσ
is nothing but the variational solution of the BVP (10).
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Therefore Rσ : f ∈ H ′ → uσ ∈ H defines a bounded operator with

‖Rσf ‖H ≤ σ−1
0 ‖f ‖H′ .

Pick f ∈ L2((0, 1)) and set

v(x) =

∫ 1

x

1
a(t)

∫ t

0
f (s)dsdt, x ∈ [0, 1].

Then v is absolutely continuous, v(1) = 0 and

vx(x) = − 1
σ(x)

∫ x

0
f (t)dt a.e. (0, 1). (11)

On the other hand, if w ∈ H, we get by applying Green’s formula∫ 1

0
σ(x)vx(x)wx(x) = −

∫ 1

0
wx(x)

(∫ x

0
f (t)dt

)
dx =

∫ 1

0
w(x)f (x)dx .

In other words, v = Rσf .
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Denote by W−1,1((0, 1)) the closure of C∞0 ((0, 1)) for the norm

‖f ‖W−1,1(0,1) =

∥∥∥∥∫ x

0
f (t)dt

∥∥∥∥
L1((0,1))

.

The norm of B(W−1,1((0, 1)), L1((0, 1))) is denoted by ‖ · ‖−1,1

Lemma 7

Let m ∈ L∞((0, 1)) and Tm : W−1,1((0, 1))→ L1((0, 1)) given as follows

Tmf (x) = m(x)

∫ x

0
f (t)dt, a.e. x ∈ (0, 1). (12)

Then ‖Tm‖−1,1 = ‖m‖L∞((0,1)).
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Introduce the distance between the resolvents

‖Rσ − Rσ̃‖∗ =
∥∥T1/σ − T1/σ̃

∥∥
−1,1 (13)

For σ, σ̃ ∈ Σ, formula (11) yields

(Rσf − Rσ̃f )x =

(
1
σ̃
− 1
σ

)∫ x

0
f (t)dt a.e. in (0, 1).

Therefore, we obtain as a consequence of Lemma 7

||Rσ − Rσ̃||∗ =

∥∥∥∥ 1σ̃ − 1
σ

∥∥∥∥
L∞((0,1))

.

This identity implies

σ−2
1 ||σ̃ − σ||L∞((0,1)) ≤ ||Rσ − Rσ̃||∗ ≤ σ−2

0 ||σ̃ − σ||L∞((0,1)).
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Distance to a subspace

Consider a distinguished coefficient τ and m ≥ 2 others, σ1, · · · , σm, and
denote the corresponding resolvents by Rτ and R1, · · · ,Rm, respectively.

From identity (11), we have(
Rτ f −

m∑
i=1

aiRi f

)
x

=

(
m∑

i=1

ai

σi
− 1
τ

)∫ x

0
f (t)dt a.e. in (0, 1) (14)

that yields the representation of the difference of a resolvent with respect
to the linear combination of a finite number of others.

Then ∥∥∥∥∥Rτ −
m∑

i=1

aiRi

∥∥∥∥∥
∗

=

∥∥∥∥∥
m∑

i=1

ai

σi
− 1
τ

∥∥∥∥∥
L∞((0,1))

. (15)
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In other words, the L∞-distance between inverses of coefficients, yields
an adequate “surrogate” for the distance between the resolvents :

dist∗(Rτ , span{Ri , 1 ≤i ≤ m})
= distL∞((0,1))

(
τ−1, span{σ−1

i , 1 ≤ i ≤ m}
)
.

dist∗ is the distance associated to ‖ · ‖∗-norm in (13).
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Greedy algorithm

Consider the parameter-dependent BVP

−(σ(x , µ)ux)x = f in (0, 1) ux(0) = 0 and u(1) = 0,

with µ ∈ D, where D is some compact subset of Rd .

Assume that σ(·, µ) ∈ Σ, for any µ ∈ D.

Fix some 0 < γ < 1. Having found µ1, . . . , µm−1, with the corresponding
diffusivity coefficients σ1, . . . , σm−1, σi = σ(·, µi ), we choose the next
element µm such that the corresponding diffusivity coefficient σm satisfies
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distL∞((0,1))

(
σ−1

m , span{σ−1
i ; i = 1, . . . ,m − 1}

)
(16)

≥ γmax
µ∈D

distL∞((0,1))

(
σ(·, µ)−1, span{σ−1

i ; i = 1, . . . ,m − 1}
)
.

The important consequence of this fact is that, for the identification of
the most relevant parameter values µn, we do not need to solve the
elliptic equation, but simply deal with the family of coefficients σ(x , µ),
solving a classical L∞-minimisation problem in an approximated manner
as indicated in (16) by a multiplicative factor (0 < γ < 1).
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Assume that Ω is C 1,1.

For f ∈ L2(Ω) and ρ ∈ L∞(Ω), the variational problem∫
Ω

∇u · ∇vdx =

∫
Ω

ρfvdx , v ∈ H1
0 (Ω). (17)

has a unique solution uρ := Rρf ∈ H1
0 (Ω).

Let A be the bounded operator A : H1
0 (Ω) ∩ H2(Ω)→ L2(Ω) given by

Au = −∆u, and denote its inverse by R.

We prove

‖R‖−1‖Rρ‖ ≤ ‖ρ‖L∞(Ω) ≤ ‖A‖‖Rρ‖, ρ ∈ L∞(Ω).



Lipschitz stability of the conductivity coefficient as a function of the resolvent
Extension : the density as function of the resolvent operator

Fix ρ1, . . . , ρN ∈ L∞(Ω). Let ρ ∈ VN = span{ρ1, . . . ρN} and ρ̃ ∈ L∞(Ω).
As ρ→ Rρ is linear, we get

‖R‖−1‖Rρ − Rρ̃‖ ≤ ‖ρ− ρ̃‖L∞(Ω) ≤ ‖A‖‖Rρ − Rρ̃‖.

Define then the distance d between the resolvent Rρ and Rρ̃ as follows

d(Rρ,Rρ̃) = ‖ρ− ρ̃‖L∞(Ω).

The distance d yields an appropriate surrogate between resolvents :

d(Rρ̃,RN) = distL∞(Ω)(ρ̃,VN),

where RN = span{Rρ1 , . . . ,RρN}.
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Surrogates in the multi-dimensional case : this problem is totally
open in the multi-dimensional case.
Elliptic matrices : in dimensions n ≥ 2 the same problems can be
formulated for equations of the form

−∂i (σij(x , µ)∂ju) = f .

The problem is much more complex in this case since there is no a
sole coefficient σ to be identified but rather all the family σij with
i , j = 1, ..., n.
Elliptic systems : the same problems arise also in the context of
elliptic systems such as, for instance, the system of elasticity.
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Evolution equations : the problem addressed make also sense for
evolution problems and, in particular, parabolic, hyperbolic and
Schrödinger equations.
Control problems : Greedy and weak greedy methods have been
implemented in the context of controllability of finite and
infinite-dimensional ODEs. But this has been done for fixed specific
data to be controlled. It would be interesting to analyze whether our
results can be extended to these controllability problems so to
achieve approximations independent of the data to be controlled.
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