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Local Carleman estimates
@ Let u be a solution of

P(x,D)u = Z Ao (x)0%u =0

|| <m

@ Let 1 € C? real valued function, V) # 0.
@ (u=0 in{yy<0})=(u=0 in{y >0}
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Local Carleman estimates
@ Let u be a solution of

P(x,D)u = Z Ao (x)0%u =0

|| <m

@ Let 1 € C? real valued function, V) # 0.
@ (u=0 in{yy<0})=(u=0 in{y >0}

Holmgren 1901: Analytic coefficients

¢
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Local Carleman estimates
@ Let u be a solution of

P(x,D)u = Z Ao (x)0%u =0

|| <m

@ Let 1 € C? real valued function, V) # 0.
@ (u=0 in{yy<0})=(u=0 in{y >0}

Petrovsky 1937 : Strictly hyperbolic equations.
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Local Carleman estimates
@ Let u be a solution of

P(x,D)u = Z Ao (x)0%u =0

|| <m

@ Let 1 € C? real valued function, V) # 0.
@ (u=0 in{yy<0})=(u=0 in{y >0}

Carleman 1939 : Two independent variables.

3
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Local Carleman estimates
@ Let u be a solution of

P(x,D)u = Z Ao (x)0%u =0

|| <m

@ Let 1 € C? real valued function, V) # 0.
@ (u=0 in{yy<0})=(u=0 in{y >0}

Hormander, Calderon, ...
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Local Carleman estimates

Let P(x, D) be a linear differential operator of order 2 defined in an

open set Q2 < R”". The following type of a priori estimate is called
Carleman estimate

Tf (IVul* + 72 |u[*)e*™dx < CJ |P(x,D)ul* ¥ %dx,
Q Q

for any u € 63 ().
@ Hormander, Isakov, Lerner, Robbiano, Zuily...

@ If the strong pseudo-convexity condition is satisfied, then we have
the Carleman estimate.
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Global Carleman estimates

Let P(x, D) be a linear differential operator of order 2 defined in an
open set (2 « R”. The following type of a priori estimate is called global
Carleman estimate

TJ (|V1/t|2 + 72 ]u|2)ezw < f |P(x, D)u\zezw + Tf |(9Vu|2 >,
Q Q I

0

for any u € H*(Q) n H)(Q). Here I'y = I' = 00
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Sufficient Conditions

We are interested in conditions on ¢ = ¢ and I'y — I" implying the
Carleman estimate

TJ (]Vu|2 + 72 |u\2)e2w < f \P()C,D)u|2 Y 4 TJ \6yu\2e2w,
Q Q r

ol
for any u € H*(Q) n H)(Q).
@ ¢ satisfies the strong pseudo-convexity condition in Q

@ ¢ satisfies the strong Lopatinskii condition on I'\Ty.
@ Tataru, Imanuvilov, Isakov, Bellassoued,...
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Example 1: Elliptic equation

Let A € L®(Q,C"), g € L*(Q,C), ¢ = ¥
P(x,D) = —A+A-V + q(x).

IVi(x)] >0 VxeQ, and J,9(x) <0, xeIl\I'p (%)

~
Pseudo-convexity in €2 Lopatinskii in I'\I'y

Imanuvilov-Fursikov

Let I'y < T be an arbitrary open set. Then there exist ¢ € €%(Q) s.t. ()
is satisfied.
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Example 1: Elliptic equation

@ LetAeL*(Q,C"),qe L*(Q,C),
Px,Du=(—A+A-V+qx)u=f, ueH(Q)nHQ),
@ Let 'y = I" be an arbitrary open set. there exist C > 0

Clulgpqy < Iz + 10wl 2y -

@ Letw < € be an arbitrary open set. there exist C > 0

Cllulmy < Il + lul 2w, -
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Exemple 2: Wave equation

Leta>0,0=0x%(0,T), 00 =2 % (a,T — ), X2 =T x (0,7),
P(x,D)=0?—A+A-V+q(x), (Wave)
Determine 'y c I" and @ : R — R such that
lulmg,) < ® (Wl + 10tlzwoxomy )+ ®0) =0,

for any u € H*(Q) such that P(x,D)u = f and us; = 0.
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Exemple 2: Wave Equation

LetT>0,0=0Qx (0,T),2 =T x (0,T)
P(x,D) =0} —A+A-V +q(x)
Let ¢(x) = |x — xo/*, xo € R\
plt,x) = PO Ty S e, (x—xp) v > 0}
T > 2Diam(2) we have
1—p K
Il guy < 14l o) (IVI\Lz(Q) + HéuuHLz(rox(o,T))) , e (0,1)

for any u € H*(Q) such that P(x,D)u = f and ujy, = 0.
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Wave equation: with variable coefficients

Let (M, g) a Riemannian manifold, A = A,. We assume that there
exists a positive and smooth function vy on M:

(A.1): 1) is strictly convex on M with respect to the metric g:
D*y(X,X)(x) >0, xeM, XeTM\{0}.
(A.2): We assume that ¢y(x) has no critical points on M:
min [V (x)| > 0.
(A.3): Under (A.1)-(A.2), let 'y < O M satisfy

{xe oM; 0,9 = 0} < Ty.
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Wave equation: with variable coefficients

Let us define
W(t,x) = Yo(x) = B(t—10)° +Po, 0<B<o O0<ty<T, fBy=0,
We define the weight function ¢ : M x R — R by
o(x, 1) = 1Y)

Theorem (Bellassoued 04°)

Assume (A.1), (A.2) and (A.3) then the global Carleman estimates is
hold in (M, g).
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Wave equation: with variable coefficients

(A.1),(A2),(A.3) = GCC: Bardos-Lebeau-Rauch

<+

Wiffle Ball: S? deleting e-neighborhood of the segments along the
equator with longitudes [7/6, /2], [57/6, 77 /6] and [37/2, 117/6]
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Sufficient Conditions on Ty

Elliptic operator

We have a Lipschitz stability estimate of the Cauchy problem if I'y < T’
be an arbitrary open set.

Hyperbolic operator

We have a Hélder stability estimate of the Cauchy problem if 'y < T' is
large:

Ty o {x € dQ; d,1p = 0}
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Fourier-Bros-lagolnitzer transform (F.B.I)

@ We will specialize to the FBI transform with a Gaussian window:
ve S (R),

%v(s,t) = OZJ‘ e%(Zi(szl)tf(xfn)z)v(n)dn.
R

@ We also consider the closely related to Bargmann transform,
defined by

Fav(z) = J e_%(z_"yv(n)dn, z=s—it
R

@ 0 (Fyv(s, 1)) = Fx(0w)(s,1)
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Fourier-Bros-lagolnitzer transform (F.B.I)

—(07 + A) (Pauls, 1;x)) = Fa((0] = Au)(s, 15x) := FA(F) (1, 55%)
[ S— —_——

Elliptic eq. Wave eq.
Let I'y = I' be an arbitrary open set.

By the elliptic Lipschitz stability estimate:

|50 Mingay < (1PN izgg) + 100 Fraalts Mizqry 017 )
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Fourier-Bros-lagolnitzer transform (F.B.I)

| ZAF (8 o) < € IFl20 -

l0v Zault, Mizirox 0.y < € 10wl 20y x 0,1

|50t i gy < € (Flizq) + 10viliaqry 07 ) |

Moreover

Pt )~ gy < Ny J

Then we have

C
Hu”Hl(Qa) S by ”“Hm(g) + e (HfHLZ(Q) + Hal/u“Lz(Fox(O,T))> J
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Fourier-Bros-lagolnitzer transform (F.B.I)

Let 'y < T" be an arbitrary open set, we have For the Wave equation:

it gy < @ (fll2i0) + 100l 2y 0,1y )

®(8) = Clog(2 + 61~
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Setting at a boundary

We consider
@ P be a smooth elliptic of order m = 2.
P = Z an(x)0%,
o] <m

with complex-valued coefficients.
@ m/2 linear smooth boundary operators of order less than m

B = 2 BE(x)0%, k=1,...,pu=m/2,
lor|< B

with complex-valued coefficients, defined in some neighborhood
of 092.

Consider the elliptic boundary value problem

Pul) = (), xe®,
Bfu(x) = gk(x), xedQ, k=1,...,pu.
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Setting at a boundary
Consider the elliptic boundary value problem

Pu(x) = f(x), xe€f,
Bfu(x) = gf(x), x€dQ, k=1,... 4.

We wish to obtain an estimate of the form
12
le™?ul? + |7 T()|* < ™ P(x, D)u|* + > |e™B* (x, D)ul?,
k=1
for u supported near a point at the boundary T(u) is the trace of
(u,Dyu,...,D" u). If we set
P, =¢e"¥P(x,D)e”"%; Blfp = ¢™BN(x,D)e” ™%, v=¢T"u
then the Carleman estimate reads:
I
2 2
VIZ + TP < [1PevI? + ) 1BV,
k=1

Estimates of this form were obtained by Tataru. We give more precise
estimates here and include the complex coefficient case.
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1st order operator at a boundary

Let p™ € C such that Imp™ > 0, f € ¥(R") and uy € C. We consider
the boundary problem

{ (Dy, — p") u(xn) = f(xa) x>0 (17)
u(0) = up € C (2)

The first line can be solved by Fourier transformation: Let f* the
extension of f by 0 on (—o0,0). Let

then v(x,) the restriction of v to R* is a solution of the first line. Since
Imp™ > 0 we have

o) = 7 (g ) S )
(6557)"

Xn
=i (H)e ™) e ) =i | )y,

0
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1st order operator at a boundary
Let p™ € C such that Imp™ > 0, f € ¥(R") and uy € C. We consider
the boundary problem

{ (Dy, — p") u(xn) = f(xn) x>0 (1%)
u(0) =upe C (2)
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1st order operator at a boundary

Let p™ € C such that Imp™ > 0, f € ¥(R") and uy € C. We consider
the boundary problem

(Dxn - p+) u(xn) :f(xn) xXp >0 (1+)

u(0) = upe C (2)
The full problem is then solved by reduction to a semihomogenous
problem: Set w(x,) = u(x,) — v(x,) then since v(0) = 0, w(x,) must

solve
(Dy, — pT)w(x,) =0 x,>0
w(0) = up e C
that is .
w(x,) = Py,
So the solution of the full problem is

u(x,) = ei”+x"uo + if eip+(x”_y")f(yn)dyn

— 0
€§/(R+) S v~ 4
e (RY)
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1st order operator at a boundary
Let p~ € C such that Imp~ < 0, f € ¥(R") and uy € C. We consider
the boundary problem

(Dxn - P_) u(x,) = f(xa) x4 >0 (17)

One solution of (17) is found by taking the restriction to (0, c0) of the
L? function:

e

En—p

) s

= (i (=) ) wfH () = —i f e IE(y, )dy,

it is locally absolutely continous. Now v(x,) is the only solution
belonging to L?(R™"): for any other solution u(x,) let
w(x,) = u(x,) — v(x,) then:

(Dy, —p7 ) w(xy) =0 x, >0

which is of the form w(x,) = €/ ¢y, that is not in L?>(R*) for ¢y # 0
since Imp~ < 0.
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1st order operator at a boundary
We give special names to the occuring operators:

1
O
AT (D)) = F 7V (AT (&).Z(f))  the corresponding Wd.o
AS (D) =1 FZ 7V (AT (&) F(fT))  itsrestriction to 2 = RT
Let us also introduce the multiplication operotor
k(xy, pT)e = H(x,,)eip+x"c, ceC.

a symbol in S7'(R x R)

Then the conclusions that the operator:
AL - SRY) — S(RT) x C
u = (f=(Dn—p")u,u(0))
is bijective and has the inverse operator
A7 D SR xC - 7 (R")
(f, uo) = kT (x)uo + As—; (Dn)f

M.Bellassoued Carleman estimates Porquerolles, 16-19 Mai 2016 26/53



1st order operator at a boundary

A (&) = a symbol in S™'(R x R)

gn - P
A= (D)f = F7! (A (&)Z(f)) the corresponding Wd.o
AgDy)f =177V (A (&) F(f1))  itsrestriction to 2 = RT
Then the conclusions from the example with p~ is that the operator:

A RN - Z(RY)
u — f=(Dy—p )u

is bijective and has the inverse operator

ATY o ZRT) - F(RT)
[ = Ag(D)f
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2nd order operator at a boundary

The general theory for elliptic boundary value problems can be

regarded as built up from the laste two examples. Consider the
Dirichlet problem on the half space R’

(~A+ Dul) =f(x) x>0
u(x',0) = up(x') X, =0
By Fourier transform in the x’-varibale

(1) { (Dﬁn + <€’>2) W(E x) = F(€,%0) % >0
i(€,0) = ig(¢') = 0

Now

(D2, +(€)") = (Do, = () Dy, +i(¢)) = (Ds, = p*) (Ds, = p7)
We can solve (1) by breaking it up in two problems

i(0) = it(&') X, =0 (D, —p7)v=f x>0
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2nd order operator at a boundary

We can solve (1) by breaking it up in two problems

{ (Dy, —pT)it(xy) =v x, >0
i(0) = itg(¢') Xn=0"
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2nd order operator at a boundary

We can solve (1) by breaking it up in two problems
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2nd order operator at a boundary

We can solve (1) by breaking it up in two problems

{(Dxn—p+)it(xn)=v X, >0

i(0) = ito(&") o_g i Da=p)v=] x>0

Vv = Ailf(f',xn) = Aﬁ(Dn)JAC(g’xn)v p=—i <£l>

(€' o) = AT (€ ), i0(€)) = kT ()i (€) + AG D)y, o™ =i(€)

(¢ ) = AT (W(€, 1), 0 (€)))
=kt (x)itg (€) + AG (D) Ay (D)F (€, x2)
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2nd order operator at a boundary

2nd-order operators at the boundary were precisely treated by
G. Lebeau and L. Robbiano (95, 97).
Set

P=—A=2Df; 0 ={x, =0}, Q={x,>0}
J

We write x = (¥, x,) and £ = (¢/,¢&,).
Take ¢ = p(x,) such that ¢’ > 0. Then

D/Z
Py = (Dy, + ity (x Z D2
1<j<n—1
= (Dy, + i(r¢'(x) + |D']) (D, + i(7¢(x) — |D'])),

where |D'| = Op(|¢/)).
Consider the principal symbol

Pe(x,€) = px, & +ir) = (& +i(7¢'(x) + [§'])) (€0 + i(7¢'(x) = [€']))
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2nd order operator at a boundary
Principal symbol
Po(x,€) = p(x, € + it¢’) = (& + (¢ (x) + |€'])) (& + i(7¢" (x) — [€]))
= (gn - pl) (gn - /72)
In the low-frequency regime, |¢’| small,

S(z)

X
p1

We have (a microlocal perfect elliptic estimate)

Vo +1T0) 12 S 1PV (+:0)
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2nd order operator at a boundary
Principal symbol
Po(x,§) = p(x,§ +it¢) = (& + i(r¢'(x) + [€])) (& + i7" (x) — [€]))
= (gn - pl) (gn - /02)
In the high-frequency regime, |¢’| large,

S(2) S(z)

P2

p1 P1

We have
T2 ]y, +1TO)]1 12 S [Povl,2 + boundary norm  (+---)

The boundary norm can be of Dirichlet, Neumann, Robin type...
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High-order operator at a boundary

Set o' = (x,¢',7)
We have

m

Po(@ &) = [ [ (& = pi(d) =S (e &P, (¢, &P &),

j=1

with

psd &) =[] G—n) pRd.&)= ] & —p)

iImpj>0 Impj=0
p., yields a prefect elliptic estimate.

We set
”Lp(@la §n) = P;; (¢, §n)P2>(Qla &n)
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High-order operator at a boundary: x,(¢',&,) = 1
Principal symbol

k

Pe(x,€) = plx, § +ir¢) = [ [ (6 — pi(x, 7€)

j=1
If all the roots have a negative imaginary part,
S(2)
R
><p1 sz (2)
ka ><p3

Write p, = a + ib, a and b both self adjoint and A = a(x, D, 1),
B = b(x,D,7), we have

1P, DvIZ: = |Av[Zs + B[ + 2R (Av, iBv)



Bézout Matrices .

Given two univariate polynomials a(¢) = " a;¢, b(¢) = Y b/, we
j=0 j=0
build the following bivariate polynomial

x _ alQb) —a(Qb) _
Ba,b(CvC) = ( ) ( ) ~( ) ( ) = Z gj,kC]Cka
¢—¢ Jok=0
called the Bézoutian of a and b, and the corresponding symmetric
matrix g, » = (gjx) of size m x m with entries g; «, bilinear in the
coefficients of a and b, is called the Bézout matrix and given by :
min(j,k)
gk = 2 (beaj ki1 — bjsk—ev10a0) ,
=0

upon letting a; = by := 0 for k > m and k < 0. With this Bézout matrix
we associate the following bilinear form:

m—1

~

Ba,b(z7zl) = Z gj,kzjz;m z= (Z07 ce aszl)v z = (Z6’ s 7Z:nfl) e C".

j,k=0
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Hermite Theorem

The following Hermite Theorem providing a relation between the roots
of a polynomial and the Bézout matrix associated with the real and
imaginary parts of the polynomial.

Lemma (Hermite Theorem)

Leth(¢) = a(¢) + ib(¢) be a polynomial of degree k = 1, where a(()
and b(¢) are polynomials with real coefficients. Assume that all the
roots of h(¢) are in the lower complex half-plane {3¢ < 0}. Then the
roots of a(¢) and b(() are real and distinct. Moreover, the bilinear form
Ea,b(z, z') is positive, that is there exists C > 0 such that

Buy(z,2) = Clz]*, zeCk
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A generalized Green formula

Consider two smooth and real symbols a(x, ¢, 7) and b(x, &, 7). The
following identity holds true

2Re (Av,iBv) = H,(v) + Bap(v) + R(v), A =a(x,D,7), B="0b(x,D,T),

forany ve Z(R”.). Here:
@ %, is the boundary quadratic form with symbol the Bézout matrix

~

Bay(z,2').
@ H,, is an interior quadratic form with real symbol

hap(0) = sub(a,b)(0) = {a,b} + Y. (bogda — adgdl’h).

laf=1

@ the remainder term R(v) is a quadratic form that satisfies

R()| < C vl

»71’7— '
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High-order operator at a boundary: x,(&,) = 1
Principal symbol

k
Po(x, &) = p(x, & + i) = [ | (&0 — pi(x,7,€)))
j=1
If all the roots have a negative imaginary part,
S(2)
X R(z)
><pl P
X X
Pk p3

we want to prove (a microlocal perfect elliptic estimate)

Wl + 1TOMe=1127 S PVl (£--4)
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Ideas of the proof
We have

2R (Av,iBv) = Hyp(v) + Bup(v) + R(v), A =a(x,D,7), B = b(x,D,7),
Write p, = a + ib, a and b both self adjoint.
|AGx, D, 7)VI72 + |B(e, D, )]z = C vl = CITO)_y o,
(the roots of @ and b are real and distinct)
With a generalized green formula we have
2R(Av,iBv);2 = Hap(v) + PBap(v) — Clly
Sub-ellipticity property:

2
|k,71/2,‘r

Po(0,8) =0 = {a,b}(0,&) >0 = hap(0,&) > 0.

The position of the roots and the Hermite Theorem give
Bap(v) 2 |T(V)|12c—1,1/2,7'
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High-order operator at a boundary

Set o' = (x,¢',7)
We have

m

Po(@ &) = [ [ (& = pi(d) =S (e &P, (¢, &P &),

j=1

with

psd &) =[] G—n) pRd.&)= ] & —p)

iImpj>0 Impj=0
p., yields a prefect elliptic estimate.

We set
”Lp(@la §n) = P;; (¢, §n)P2>(Qla &n)
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High-order operator at a boundary

Boundary operators: B, k=1,...,pu
Conjugated operators: B, = ¢"#B‘e™ "%
Principal symbol: bf,(¢', &) = b, (&)
Strong Lopatinskii condition:

For all f(&,) polynomial, there exist ¢y, ..., c, € C and ¢(&,) polynomial
such that

M
F(&) = Y bl (&) + a(6n)rp (&)
k=1
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High-order operator at a boundary
We have thus obtained

Theorem (Bellassoued, Le Rousseau)
Under

@ sub-ellipticity condition,
@ strong Lopatinskii condition,

Let xo € 02. There exist W a nbhd of xo, C > 0, and 1y > 0 such that at
the boundary

- 2
T l||€W“Hm,r + ‘ewT(”)LG—l,l/z,T

1

2

< C(lle™P(x, Dyullfs + Y le™BH(x, DYl 15, )
k=1

for 7 = 10 and u = wiq withw € €5°(W).
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Outline

9 Application: Inverse problem of the dynamic Schrédinger equation
in waveguide
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Dynamic Schrodinger equation in waveguide

Let w is an open connected bounded domain in R*~!, n > 3, with
boundary dw, and we consider () := w x R, in R", with cross section w.
Its boundary is denoted by I' := dw x R. Given T > 0, p : 2 — R and
up : €0 — R, we consider the Schrédinger equation,

—i0u(x,t) — Au(x,t) + p(x)u(x,1) =0, (x,1) € Q x (0,7),

associated with the initial data uy,

u(x,0) = up(x), x € £,

and the homogeneous Dirichlet boundary condition,

u(x,t) =0, (x,1) e I' x (0,7).
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Dynamic Schrodinger equation in waveguide

Given an arbitrary relatively open subset S, < dw, we aim for
determining the unknown potential p = p(x) from one Neumann
observation of the function u, on ¥, :=T'y x (0,7), where I, := S, x R
is an infinitely extended strip.

The uniqueness issue: is to know whether any two admissible
potentials p;, j = 1,2, are equal, i.e. p;(x) = p»(x) for a.e. x € Q, if their
observation data coincide, that is, if we have

Opltp, (X, 1) = Oputp, (x,1), (x,1) € Xy
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Dynamic Schrodinger equation in waveguide

Theorem (Bellassoued-Kian-Soccorsi)
Assume that
Ik > 0, Ido, |uo(x,x,)] = K™, (&, x,) € Q.
For pj € Puamissivie(Po,wo), j = 1,2, we denote by u; the solution to the

IBVP, where p; is substituted for p. Then, for any € € (0, 1), there exists
a constant C > 0, such that we have

&

lor ~ Py < € (100 = w)l, + flog 0, (s — ), )

Ha,/MH* = ”a’/uHHl(O,T;LZ(F*)) , ue Hz.
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Weak observability for the Schrodinger eq.

Let the linear Schrédinger equation

v(x,1) =0 on 09 x [0,00), (1)

oy +Av=0 in Q x [0,00),
v(x,0) = vo(x) in Q
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Weak observability for the Schrodinger eq.

Let the linear Schrédinger equation

v(x,1) =0 on 09 x [0,00), (1)
v(x,0) = vo(x) in Q

{ oy +Av=0 in Q x [0,00),
Theorem

LetT'y be a non-empty open subset of 0X). For any p € (0,1) and
T > 0, there exists C > 0 and \y > 0 such that for any non-identically
zero initial data ug € H*(S2), we have

1 T
ol < € |35 Dol + € [ fontePasar]
0

for any v = ~o.
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Weak observability for the Schrodinger eq.

Step 1: Observability of the Heat eq.
Let 2 > 0, we consider the linear heat equation

ogw+Aw=f in Qx(0,h), @)
w(x,s) =0 on 00 x (0,h),
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Weak observability for the Schrodinger eq.

Step 1: Observability of the Heat eq.

Let 2 > 0, we consider the linear heat equation
ogw+Aw=f in Qx(0,h), @)
w(x,s) =0 on 09 x (0,h),

Theorem
LetT'yg < 09). Then there exists C;, > 0 such that

L Iw(x,0)]* dx < Cp ( L ' X lw (x, 5)|* dxds + L}L If (x, s)|2dxds>

Carleman parabolic estimates.
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Weak observability for the Schrodinger eq.

Step 2: Connection between the Schrédinger’s and the heat egs.
Let yu € (0,1) and choose m € N* such that 0 <y + 5= < 1. Put
p=1—5>pu Forany v > 1, the function

1 ; m

is holomorphic in C. Moreover, there exists four positive constants Cj,
C,, C3 and C4 (independent on ) such that

IF,(z)] < Cl,ypeczvllmzll/"7 vzeC,
and

|Fy(2)| < CyPeCRE et e €, |Imz| < Cy|Rez])
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Weak observability for the Schrédinger eq.

Step 2: Connection between the Schrédinger’s and the heat egs.
Now, let s, t € R, we introduce the following Fourier-Bros-lagolnitzer
transformation as in (Lebeau-Robbiano)

wy (X, 8) = J Fo(t+is —71)o(T)w(x, 7)dT ,
R
where ¢ € C°(R), reI'and s € (0, h).
Let v be a solution of the following boundary value problem in

(i0; + A)v(x,t) =0 in Qx(0,7),
v=20 on 00 x (0,7).

In connection with the operator (i¢, + A), we define the parabolic
operator in  x (0, k) for some h > 0 by (J; + A).
Since

(& + A)v i (x,5) = JRFW(HI-S—T)(@ + A) (p(r)v(x, 7)) dr
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Connection between the Schrodinger’s and heat eqgs

We have v, ; satisfies the following IBVP in 2 x (0, h).

{ (05 + A) vy i(x,8) = Gy i(x,5) in Q x (0,h),
Vyi(x,8) =0 on 09 x (0,h),
Va1 (x,0) = (Fy = v(x, -))(2) in Q

where

Gy s) = —i fR Fo(r + is — )¢ ()u(x, 7)dr.
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Weak observability for the Schrodinger eq.

Step 3: Estimations
@ There extis ¢ € C°(R) and I < (0, T) such that

1G22k 0.0) < Ce™ V lzxry: eI
o
Iv(x, ')Hiz(l) < @, ) — Fydv(x, ')H%Z(R) + J; [v+.0(x, 0) [ dt

C
< e + L v 45, 0)2 dt
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Thank you
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